Sunday: June 2	Detailed Program Information
Registration (Amaraua Foyer)	4:00 pm - 7:00 pm
Reception (Amaraua Foyer)	7:00 pm - 9:00 pm
Adjourn	9:00 PM

Monday: June 3	Detailed Program Information	
Registration (Amaraua Foyer)	7:30 am - 12:00 pm	
Opening Ceremony (Amaraua Conf. Hall)	7:40 am - 8:00 am	
Track 1: Phononic Crystals		
Session: 1 (Amaraua Conference Hall)	8:00 am - 10:20 pm	
Session Chair: T.T. Wu		
Author: E. N. Economou	Category: Plenary Talk	
Affiliation: IESL, Foundation for Research and Technology		
Paper #: 0154	Time: 8:00 am -8:30 am	
Title: Manipulating the Flow of Classical Waves: The Case of	Phononic Crystais	
Abstract: The appearance of frequency gaps for acoustic and elastic wave in inhomogenous media is examined. Strong resonance scattering (geometric or physical) and destructive inter-ference are the key factors. Some characteristic examples will be presented.		
Author: V. Laude	Category: Plenary Talk	
Affiliation: Institut FEMTO-ST, Université de Franche-Comté	and CNRS	
Paper #: 0098	Time: 8:30 am -9:00 am	
Title: Phononic Crystal Diffraction Gratings for Surface and E	Bulk Acoustic Waves	
addition to frequency band gaps, phononic crystals of finite and can be optimized for diffraction efficiency, as we illustra Author: J. H. Page		
Affiliation: Department of Physics and Astronomy, Universit		
Paper #: 0133	Time: 9:00 am -9:20 am	
Title: Anomalous Ultrasonic Transport through a 2D Phonon	ic Crystal with Competing Bragg and Hybridization Gaps	
Abstract: In 2D phononic crystals of nylon rods surrounded by water, strikingly unusual dispersion effects have been observed, both experimentally and numerically, when both hybridi-zation and Bragg gaps coincide in frequency. These remarkable characteristics are explained by the competition between two co-existing propagation modes, reflecting strong coupling between scattering resonances of the rods.		
Author: V. Romero-Garcia	Category: Invited Oral	
Affiliation: Universitat Politècnica de València		
Paper #: 0109	Time: 9:20 am -9:40 am	
Title: Unlocked Evanescent Waves in Sonic Crystals		
Abstract: Unlocked evanescent waves in periodic medium are characterized by Bloch modes which wave vector has real part in between the Brillouin zone and non zero imaginary part. Because of these properties, we report here the relevance of the k-space of unlocked evanescent waves in thin semi-infinite fluid-fluid sonic crystal slabs.		

Author: G. Fytas	Category: Invited Oral
Affiliation: Max Planck Institute for Polymer Research and Department of Materials Science, University of Crete and	
Paper #: 0158	Time: 9:40 am -10:00 am

Title: Hypersonic Phononic Band Gap Structures

Abstract: The study of hypersonic crystals imposes substantial demand on fabrication and characterization techniques. Colloid and polymer science offer methods to create novel materials that possess periodic variations of density and elastic properties at mesoscopic length scales commensurate with the wave length of hypersonic phonons and hence photons of the visible light. Polymer- and colloid-based phononics is an emerging new field at the interface of soft materials science and condensed matter physics with good perspectives ahead. Here, examples from fabricated structures will be highlighted.

Author: M. M. Sigalas	Category: Invited Oral
Affiliation: Department of Materials Science, University of Patras	
Paper #: 0037	Time: 10:00 am -10:20 am

Title: Phononic Band Gaps in Graphene-like Materials and Nanotubes

Abstract: In this work graphene and graphene-like structures in which some of their atoms are replaced by other group IV atoms are examined. Phononic band gaps in these nanoscale phononic crystals, is studied. Nanotubes were also examined and their similarities with the graphene-like materials were found.

Coffee Break (Amaraua Foyer)	10:20 am - 10:40 am	
Track 1: Phononic Crystals		
Session: 2 (Amaraua Conference Hall)	10:40 am - 1:00 pm	
Session Chair: J. Page		
Author: J. O. Vasseur	Category: Invited Oral	
Affiliation: Institut d'Electronique, de Micro-électronique et de Nanotechnologie		
Paper #: 0047	Time: 10:40 am -11:00 am	

tle: Two-dimensional Solid/Solid Phononic Crystal with Multiple Functionalities

Abstract: A two dimensional solid/solid phononic crystal exhibits a passing band of longitudinal polarization with equifrequency contours of quasi-square shape. Due to this property, peculiar refraction phenomena occur and serve as a basis for new and original functionalities.

Author: AC. Hladky-Hennion	Category: Invited Oral
Affiliation: IEMN (UMR 8520 CNRS)	
Paper #: 0030	Time: 11:00 am -11:20 am
Title: Negative Refraction and Focalization of Acoustic Waves Using a Foam-like Metallic Structure	

Abstract: A phononic crystal (PC) based on a metal structure permeated by air is presented and studied. At low frequency, the structure has water like-density and -longitudinal velocity. At higher frequency, the structure displays a perfect negative index matching with surrounding water and focusing capability. Numerical results and experiments are presented.

Author: P. H. Otsuka	Category: Invited Oral
Affiliation: Division of Applied Physics, Faculty of Engineering, Hokkaido University	
Paper #: 0078	Time: 11:20 am -11:40 am

Title: Mapping Surface Phonons in Phononic Crystals in Real- and k-Space

Abstract: We investigate gigahertz phonon propagation in a triangular-lattice phononic crystal by time-resolved twodimensional imaging and by finite element simulations. The effects of exciting different points in the crystal lattice in kspace are revealed by spatiotemporal Fourier analysis. Moreover, the effect of conducting the Fourier analysis at different depths in the sample is elucidated in the numerical simulations.

Author: O. Matsuda	Category: Invited Oral	
Affiliation: Division of Applied Physics, Faculty of Engineering, Hokkaido University		
Paper #: 0013	Time: 11:40 am -12:00 pm	

Title: Time-resolved Imaging of the Negative Refraction of GHz Surface Acoustic Waves in Phononic Crystals

Abstract: We investigate the negative refraction of surface acoustic waves at an interface between a two-dimensional phononic crystal and a homogeneous medium with a simulation using the finite element method and with a time-resolved two-dimensional imaging experiment. Negative refraction in the GHz frequency region is clearly revealed by spatiotemporal Fourier analysis.

Author: B. Bonello	Category: Invited Oral
Affiliation: Institut des NanoSciences de Paris (INSP-UMR CNRS 7588)	
Paper #: 0057	Time: 12:00 pm -12:20 pm

Title: Observation of Localized Cavity Modes in a 2D Phononic Crystal Slab

Abstract: The confinement of anti-symmetric Lamb modes in a single defect inserted in a 2D silicon/air phononic crystal is measured as a function of both position and time. Posi-tions and relative amplitude of the localized modes well agree with FEM calculations. The dynamics of confinement are deduced from the time dependence.

tegory: Org. Colloquium	
Affiliation: 1Institute of Applied Mechanics, National Taiwan University	
me: 12:20 pm -12:40 pm	
1	

Title: Quartz Phononic Lamb Wave Resonator

Abstract: In this work, we present results on the design and fabrication of an AT-cut quartz Lamb wave resonator with phononic crystal reflective gratings. The deep reactive ion etching process with a laboratory-made etcher was utilized to fabricate phononic crystal (PC) structures of the AT-cut quartz Lamb wave resonator. The finite element method was adopted to calculate the PC band structure, effective reflective distance from the PC boundary and further the resonant modes and admittance of the phononic Lamb wave resonant cavity. Through the comparison studies between the experimental and simulated results, a design process for the AT-cut quartz phononic Lamb wave resonator was proposed.

Author: A. Khelif	Category: Org. Colloquium
Affiliation: Institut FEMTO-ST, 32 avenue de l'Observatoire	
Paper #: 0117	Time: 12:40 pm -1:00 pm

Title: How Pillar-based Phononic Crystal Controls the Surface Acoustic Waves

Abstract: It is well known that pillars have internal modal resonances that can be tuned in frequency by design. When they hybridize with the continuum of surface modes of the supporting substrate, they lead to the formation of Fano-like resonances. Depending on the near-field coupling of neighboring pillars, a phenomenon of band repulsion can further be induced. Thus, in addition to Bragg band gaps, frequency band gaps can appear around the local resonances of the pillars. The guidance and the confinement of surface waves through defects are also affected by these resonances as well as the dispersion.

Lunch Break (Kahramana Resturant)	1:00 pm - 3:30 pm	
Track 1: Phononic Crystals		
Session: 3 (Amaraua Conference Hall)	3:30 pm - 6:30 pm	
Session Chair: A. Khelif		
Author: Y. S. Wang	Category: Invited Oral	
Affiliation: Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing		
Paper #: 0025	Time: 3:30 pm -3:50 pm	
Title: Method Based on Dirichlet-to-Neumann Map for Band Structure Calculation of Two-dimensional Phononic Crys-		
tals with Consideration of Interface Effects		

Abstract: A numerical method based on Dirichlet-to-Neumann Map is developed for band structure calculation of twodimensional phononic crystals. Various interface conditions between the scatterers and host material are considered. Numerical results for a phononic crystal of the nano size are presented; and the interfacial effect is discussed.

Author: Y. Pennec	Category: Invited Oral
Affiliation: Institut d'Electronique, de Microélectronique et	de Nanotechnologie, Université de Lille
Paper #: 0062	Time: 3:50 pm -4:10 pm

Title: Dual Phononic and Photonic Crystal Sensor

Abstract: We study theoretically dual phononic-photonic (the so-called phoxonic) crystals for liquid sensing applications. We investigate the existence of well-defined features (peaks or dips) in the transmission spectra of acoustic and optical waves and evaluate their sensitivity to the sound and light velocity of the liquid environment.

Title: Silicon MEMS + Photonic Systems*

Abstract: In this talk, I will introduce a method for actuating an optomechanical resonator using electrostatic forces and sensing of mechanical motion by using the optical intensity modulation at the output of an optomechanical resonator, integrated into a monolithic system fabricated on a silicon-on-insulator (SOI) platform. I will discuss new applications enabled by this hybrid system including Opto-Acoustic Oscillators (OAO) and inertial sensors.

Author: N. Z. Swinteck Category: Contributed Oral	
Affiliation: Department of Materials Science and Engineerin	g, University of Arizona
Paper #: 0114 Time: 4:30 pm -4:45 pm	

Title: Shear-resonance Modes in 2D and 3D Phononic Structures with Ultra-soft-polymer Host Matrices

Abstract: In this study we examine the modes of vibration supported by a variety of 2D and 3D elastic phononic crystals (EPCs) comprised of stiff-polymer inclusions and ultra-soft-polymer matrices (matrix materials with transverse speed of sound less-than or equal to 30 m/s). Finite-difference time-domain (FDTD) band structure and displacement field calculations reveal the presence and origin of numerous shear-resonance modes in these types of EPCs. We highlight unique cases of rigid-body rotational resonance as well as hybridization between shear-resonance and bulk transverse modes and attribute these phenomena to the small value of transverse speed of sound for the host matrix material.

Author: A. A. Kutsenko	Category: Contributed Oral
Affiliation: Universite de Bordeaux, Institut de Mecanique e	t d'Ingenierie de Bordeaux
Paper #: 0029	Time: 4:45 pm -5:00 pm
	Time: 4.45 pm -5.00 pm

Title: Surface Waves in Phononic Crystals

Abstract: We study SH surface waves in a 2D-periodic half-space with free surface. An explicit form of the dispersion equation $f(\omega,k)=0$ is found. The surface-wave dispersion branches ω (k) are calculated by the new method based on the projector on the space of evanescent modes. Subsonic and supersonic SH surface waves are observed. The low-frequency asymptotics of the subsonic branch is discussed in detail.

Author: N. Aravantinos-Zafiris	Category: Contributed Oral
Affiliation: Department of Materials Science, University of P	Patras
Paper #: 0046	Time: 5:00 pm -5:15 pm
Title: Sonic Strip Waveguide with Phononic Crystal	

Abstract: Using the Finite Difference Time Domain method, we numerically examine the usage of a sonic strip waveguide having a phononic crystal. This structure could have important applications in acoustic circuits. Different materials, all three polarizations of the input pulse and the effect of all the geometric parameters of the structure were considered for this study. Defected phononic crystal was also included in our calculations.

Author: J. F. Zhao	Category: Contributed Oral
Affiliation: Institut des NanoSciences de Paris (INSP-UMR CM	IRS 7588) Université Pierre et Marie Curie
Paper #: 0086	Time: 5:15 pm -5:30 pm
Title: Focalization of the Lowest Order Antisymmetric Lamb	Wave with a Gradient-index Phononic Plate

Abstract: In this work, we report on a study of the lowest antisymetric A0 Lamb wave in a gradient-index phononic crystal plate with a rectangular lattice. The numerical and experimental results demonstrate very close behaviors of

wave propagation inside phononic crystal, and both of them show an efficient focalization of the A0 mode wave.

Author: T. J. Isotalo	Category: Contributed Oral
Affiliation: Nanoscience Center, Department of Physics, Uni	versity of Jyväskylä
Paper #: 0028	Time: 5:30 pm -5:45 pm

Title: 3D Phononic Colloidal Crystals: Fabrication and Modeling

Abstract: We have investigated the fabrication and characterization of nano-scale polystyrene colloidal crystals as subkelvin 3D phononic materials. A method for integrating simple circuit elements onto colloidal crystal surfaces has been developed. To support experiments, we have performed FEM simulations for various close-packed structures.

Author: J. H. Park	Category: Contributed Oral
Affiliation: WCU Multiscale Design Division, Seoul National	University
Paper #: 0012	Time: 5:45 pm -6:00 pm

Title: Engineering of Phononic Crystals by Topology Optimization

Abstract: The topology optimization of some unexplored design problems of phononic crystals is presented: selfcollimation and periodicity-controlled bandgap maximization. For self-collimation, we aim to design unit cell layouts that propagate non-diffractive waves of narrow beam width. For bandgap maximization, we address the periodicity issue and propose a new formulation.

Category: Contributed Oral
Time: 6:00 pm -6:15 pm

Title: A Magneto-acoustic Approach to Phononic Signal Pro-cessing and Amplification

Abstract: We formulate a theoretical means of guiding and manipulating phonons. Magneto-acoustic materials, controlled by a suitably sculpted magnetic field, can produce arbitrary linear operations (e.g. gyrations, beam splitting) on transverse phonon currents. A control mechanism (measurement and post-processing) extends this approach to nonlinear operations (e.g. amplifying arbitrarily polarized inputs).

Author: S. Degraeve	Category: Contributed Oral
Affiliation: IEMN, Institut d'Electronique, de Microelectronio	que et de Nanotechnologies
Paper #: 0148	Time: 6:15 pm -6:30 pm
Title: Electric Charge Band Gans in Phononic Crystals	

Title: Electric Charge Band Gaps in Phononic Crystals

Abstract: Thononic crystals consist of periodic arrangements of inclusions in a matrix, allowing absolute band gaps. Bragg band gaps are produced by wave scattering at periodic impedance mismatch zones, while hybridization band gaps are generated by periodic arrangements of resonators. A third kind of band gaps is presented here in the case of piezoelectric phononic crystals: electric charge band gaps. They have the property to be highly tunable.

Adjourn	6:30 PM
* O - L	

* Optomechanics Talk

Registration (Amaraua Foyer)		
	7:30 am - 12:00 pm	
Announcements (Amaraua Conf. Hall)	7:45 am - 8:00 am	
Track 2: Phononic Metamaterials		
	8:00 am - 10:20 pm	
Session: 4 (Amaraua Conference Hall) Session Chair: J. Sánchez-Dehesa	0.00 am - 10.20 pm	
Author: P. Sheng	Category: Plenary Talk	
Affiliation: Department of Physics and William Mong Institu		
Paper #: 0127	Time: 8:00 am -8:30 am	
Title: Dark Acoustic Metamaterials		
Abstract: The absorption coefficient for low frequency sound is generally small. Hence their attenuation usually requires bulky and/or soft materials. In this talk I show that by using designed acoustic metamaterials comprising thin rubber membranes decorated with metallic platelets, we can achieve not only total reflection, but also very high absorption of the low frequency sound. These effects are made possible, in certain tunable frequency regimes, by the negative dynamic mass of the system and the high concentration of curvature energy density (by several orders of magnitude) at the perimeters of the decorated platelets		
Author: N. X. Fang	Category: Plenary Talk	
Affiliation: Massachusetts Institute of Technology		
Paper #: 0153	Time: 8:30 am -9:00 am	
Title: Bending the Flow of Sound and Elastic Waves in Acous	tic Metamaterials	
we will discuss its application to an array of acoustic devic complex fabrication methods. We will also discuss the poten	tes and systems that are physically implementable without tial of MHz acoustic metamaterials.	
Author: G. K. Hu	Category: Invited Oral	
Affiliation: Beijing Institute of Technology		
Paper #: 0106		
	Time: 9:00 am -9:20 am	
Title: Negative-mass Metamaterials and Superlensing Effect		
Title: Negative-mass Metamaterials and Superlensing Effect Abstract: Acoustic metamaterials with negative effective r spring and continuum material models. Based on the propo create images beyond the diffraction limit. There are two	nass below a cut-off frequency are analyzed in both mass- osed metamaterial model, acoustic superlens is designed to different mechanisms by which evanescent fields can be mass, and the other is based on the resonant tunneling. The	
Title: Negative-mass Metamaterials and Superlensing Effect Abstract: Acoustic metamaterials with negative effective r spring and continuum material models. Based on the propo create images beyond the diffraction limit. There are two maintained. One mechanism is based on the zero effective r	nass below a cut-off frequency are analyzed in both mass- osed metamaterial model, acoustic superlens is designed to different mechanisms by which evanescent fields can be mass, and the other is based on the resonant tunneling. The	
Title: Negative-mass Metamaterials and Superlensing Effect Abstract: Acoustic metamaterials with negative effective r spring and continuum material models. Based on the propo create images beyond the diffraction limit. There are two maintained. One mechanism is based on the zero effective r imaging performance of the proposed lens is validated by be	nass below a cut-off frequency are analyzed in both mass- osed metamaterial model, acoustic superlens is designed to different mechanisms by which evanescent fields can be mass, and the other is based on the resonant tunneling. The oth numerical and experimental methods.	
Title: Negative-mass Metamaterials and Superlensing Effect Abstract: Acoustic metamaterials with negative effective r spring and continuum material models. Based on the proper create images beyond the diffraction limit. There are two maintained. One mechanism is based on the zero effective r imaging performance of the proposed lens is validated by be Author: YF. Chen	nass below a cut-off frequency are analyzed in both mass- osed metamaterial model, acoustic superlens is designed to different mechanisms by which evanescent fields can be mass, and the other is based on the resonant tunneling. The oth numerical and experimental methods.	
Title: Negative-mass Metamaterials and Superlensing Effect Abstract: Acoustic metamaterials with negative effective r spring and continuum material models. Based on the prope create images beyond the diffraction limit. There are two maintained. One mechanism is based on the zero effective r imaging performance of the proposed lens is validated by be Author: YF. Chen Affiliation: Nanjing University	nass below a cut-off frequency are analyzed in both mass- osed metamaterial model, acoustic superlens is designed to different mechanisms by which evanescent fields can be mass, and the other is based on the resonant tunneling. The oth numerical and experimental methods. Category: Invited Oral	

Author: J. Christensen	Category: Invited Oral
Affiliation: Technical University of Denmark	
Paper #: 0001	Time: 9:40 am -10:00 am

Title: Tunable Acoustic Metadevices

Abstract: We demonstrate both by analytical and numerical simulations that structured rigid screens filled with elastic inclusions can be described in the long wavelength limit as an effective medium characterized by a mass density of the plasmon form. This type of metamaterial is thus not only used to control surface waves but also to create them. The combination of this behavior together with gap materials hosting bulk modulus resonances, produces negative dispersion with simultaneous negative values of peff and 1/keff, which is a characteristic of nega-tive refractive index materials.

Author: HH. Huang	Category: Invited Oral
Affiliation: National Taiwan University	
Paper #: 0008	Time: 10:00 am -10:20 am

Title: Transmission of Bianisotropic Elastic Metamaterials

Abstract: The dynamics characteristics of elastic metamaterials are investigated. Of particular interests are the bianisotropic material properties and their implications. Reflection and transmission of the harmonic waves are determined using the effective continuum model. In addition, interesting transient wave motion is presented through numerical simulations based on simplified mass-spring model.

am - 1:00 pm	
am - 1:00 pm	
y: Invited Oral	
Affiliation: National University of Defense Technology	
0:40 am -11:00 am	

Abstract: We study the wave attenuation behavior (inside band gaps) and wave beaming effects (within pass bands) of a locally resonant phononic plate made of a 2D periodic array of local resonators attached to a thin homogeneous plate. The wave attenuation behavior is char-acterized by the imaginary parts of Bloch wavenumbers, while the wave beaming effects are revealed by the iso-frequency contours of dispersion surfaces.

Author: G. L. Huang	Category: Invited Oral
Affiliation: University of Arkansas at Little Rock	
Paper #: 0099	Time: 11:00 am -11:20 am
Title: Vibroacoustic Modeling and Analysis of Acoustic I	Netamaterials with Multiple Resonators

Abstract: In this study, an analytical structural-acoustic model of the membrane-type acoustic metamaterial with multiple resonators is developed to consider the both translational and rotational motions of the resonators. The local deformation of the membrane is obtained through the point matching approach. The transmission loss and sound absorption are then described with different parameters of the resonators.

Author: G. Lerosey	Category: Invited Oral
Affiliation: ESPCI ParisTech and CNRS	
Paper #: 0161	Time: 11:20 am -11:40 am
Title: Steering Waves at the Deep Subwavelength Scale in Locally Resonant Metamaterials	

Abstract: Using a microscopic approach we show that the dispersive properties of some metamaterials based on resonant unit cells are solely governed by interferences and not by near field interactions. This allows us to modify locally those metamaterials in order to create point or line defects, with which we can confine and guide waves on scales much smaller than the wavelength. We give examples in the audible acoustic range as in the microwave domain.

uthor: Y. Y. Kim	Category: Invited Oral
ffiliation: Seoul National University	
aper #: 0160	Time: 11:40 am -12:00 pm

Title: Experimental Techniques for Ultrasonic Metamaterials with Guided Waves

Abstract: This work presents magnetostrictive transducer-based experimental methods suitable for the investigation of intriguing phenomena of ultrasonic elastic waves. We will present the critical advantages of the proposed experimental technique and show interesting experimental results for elastic metamaterials and phononic crystals.

Author: IK. Oh	Category: Invited Oral
Affiliation: Korea Advanced Institute of Science and Technology	
Paper #: 0054	Time: 12:00 pm -12:20 pm
Titler Vibra, Acoustic Mayoguide with Tunchla Dandgan	

Title: Vibro-Acoustic Waveguide with Tunable Bandgap

Abstract: We represent that tunable bandgap on the propagation of acoustic waves can be achieved by using a vibroacoustic waveguide consists of a series of unit metamaterial cells with shunted piezoelectric structure. Each of unit cells is composed of a shunt circuit and an embedded single crystal PMN-PT structure (SCPPS) which is used as sensingactuator.

Author: C. T. Chan	Category: Org. Colloquium
Affiliation: Hong Kong University of Science and Technology	
Paper #: 0135	Time: 12:20 pm -12:40 pm

Title: Dirac Cone Dispersion and Its Implications in Phononics

Abstract: Dirac cone like dispersions at k=0 can be obtained in classical wave systems using accidental degeneracy. We will examine the consequences of such a dispersion in two-dimensional (2D) acoustic and elastic wave crystals and we will attempt to extend the concept to 3D.

Author: J. Sánchez-Dehesa	Category: Org. Colloquium	
Affiliation: Universitat Politècnica de València		
Paper #: 0137	Time: 12:40 pm -1:00 pm	

Title: Advances in Acoustic Cloaking and Metamaterials with Negative Paramaters

Abstract: Acoustic cloaks based on the scattering cancellation of the scattered waves by the object are designed, fabricated and experimentally demonstrated for two and three dimensional objects. In particular, an axisymmetric 3D cloak for sphere is fabricated by a 3D printer. In addition, acoustic metamaterials or metafluids with negative acoustic parameters will be reported. These structures consist of cylindrical cavities drilled in two-dimensional waveguides where the effective parameters can be tailored by changing the parameters of the cavities.

Lunch Break (Kahramana Resturant)	1:00 pm - 3:30 pm	
Track 2: Phononic Metamaterials		
Session: 6 (Amaraua Conference Hall)	3:30 pm - 6:30 pm	
Session Chair: C. T. Chan		
Author: Y. Lai	Category: Invited Oral	
Affiliation: Soochow University		
Paper #: 0144	Time: 3:30 pm -3:50 pm	
Title: Coherent Perfect Absorbers: From Optics to Acoustics		

Abstract: We extend the concept of coherent perfect absorbers (CPAs) from optics to acoustics, which provides us a new way to absorb sound very efficiently. It is possible to achieve acoustic CPAs by tuning both mass density and modulus of phononic metamaterials.

Author: Y. A. Urzhumov	Category: Invited Oral
Affiliation: Duke University	
Paper #: 0049	Time: 3:50 pm -4:10 pm
Title: Structurally Rigid Elastic Binary Compo	osites for Acoustic Imaging Countermeasures
composite shells capable of suppressing th	ning from transformation acoustics and beyond for creating rigid elastic ne total scattering cross-section of acoustically large objects. The reported d shape and topology optimization, and the outcomes are suitable for rapid
Author: W. Akl	Category: Invited Oral
Affiliation: Ain Shams University	
Paper #: 0164	Time: 4:10 pm -4:30 pm
Title: Acoustic Metamaterial with Programn	nable Bulk Modulus for Sector Acoustic Cavities
sector-shaped acoustic metamaterial.	
Author: O. R. Bilal	Category: Contributed Oral
	Category: Contributed Oral
· · · · · · · · · · · · · · · · · · ·	Category: Contributed Oral Time: 4:30 pm -4:45 pm
Author: O. R. Bilal Affiliation: University of Colorado Boulder Paper #: 0173 Title: Trampoline Metamaterials: Local Resc	Time: 4:30 pm -4:45 pm
Affiliation: University of Colorado Boulder Paper #: 0173 Title: Trampoline Metamaterials: Local Resc Abstract: We investigate the dispersion cha pillars on the solid regions in a plate pattern act as springboards leading to an enhanced pillars with no holes. As such, we refer to the	Time: 4:30 pm -4:45 pm pnance Enhancement by Springboards aracteristics of locally resonant metamaterials formed from the erection of ned by a periodic array of holes. We show that these solid regions effectively d resonance behavior by the pillars when compared to the nominal case of is band gap enhancement phenomenon as the trampoline effect.
Affiliation: University of Colorado Boulder Paper #: 0173 Title: Trampoline Metamaterials: Local Reso Abstract: We investigate the dispersion cho pillars on the solid regions in a plate pattern act as springboards leading to an enhanced pillars with no holes. As such, we refer to the Author: M. J. Frazier	Time: 4:30 pm -4:45 pm onance Enhancement by Springboards aracteristics of locally resonant metamaterials formed from the erection of ned by a periodic array of holes. We show that these solid regions effectively d resonance behavior by the pillars when compared to the nominal case of
Affiliation: University of Colorado Boulder Paper #: 0173 Title: Trampoline Metamaterials: Local Resc Abstract: We investigate the dispersion cho pillars on the solid regions in a plate pattern act as springboards leading to an enhanced pillars with no holes. As such, we refer to the Author: M. J. Frazier Affiliation: University of Colorado Boulder	Time: 4:30 pm -4:45 pm onance Enhancement by Springboards aracteristics of locally resonant metamaterials formed from the erection of ned by a periodic array of holes. We show that these solid regions effectively d resonance behavior by the pillars when compared to the nominal case of is band gap enhancement phenomenon as the trampoline effect. Category: Contributed Oral
Affiliation: University of Colorado Boulder Paper #: 0173 Title: Trampoline Metamaterials: Local Resc Abstract: We investigate the dispersion cha pillars on the solid regions in a plate pattern act as springboards leading to an enhanced pillars with no holes. As such, we refer to the Author: M. J. Frazier Affiliation: University of Colorado Boulder Paper #: 0174	Time: 4:30 pm -4:45 pm pnance Enhancement by Springboards aracteristics of locally resonant metamaterials formed from the erection of ned by a periodic array of holes. We show that these solid regions effectively d resonance behavior by the pillars when compared to the nominal case of is band gap enhancement phenomenon as the trampoline effect. Category: Contributed Oral Time: 4:45 pm -5:00 pm
Affiliation: University of Colorado Boulder Paper #: 0173 Title: Trampoline Metamaterials: Local Resc Abstract: We investigate the dispersion che pillars on the solid regions in a plate patterr act as springboards leading to an enhanced pillars with no holes. As such, we refer to the Author: M. J. Frazier Affiliation: University of Colorado Boulder Paper #: 0174 Title: Metadamping: An Emergent Phenome Abstract: Using a generalized form of Bl periodic materials – one with local resonat	Time: 4:30 pm -4:45 pm pnance Enhancement by Springboards aracteristics of locally resonant metamaterials formed from the erection of ned by a periodic array of holes. We show that these solid regions effectively d resonance behavior by the pillars when compared to the nominal case of is band gap enhancement phenomenon as the trampoline effect. Category: Contributed Oral Time: 4:45 pm -5:00 pm enon in Dissipative Metamaterials Voch's theorem, we compare two statically equivalent, viscously damped to the other without. We find that with the same level of prescribed rial exhibits higher dissipation throughout the spectrum. This outcome

Abstract: We study the acoustic response of locally resonant granular crystals, consisting of one-almensional arrays of hollow spherical particles containing local resonators. The funda-mental unit cell of these periodic systems (i.e., a Massin-Mass unit, "MinM") is made of an aluminum outer spherical shell and a steel inner mass connected by a polymeric plastic struc-ture. We characterized the linear spectra of the individual particles and of one-dimensional ar-rays of particles using numerical simulations and experiments. We measure the existence of a band gap due to the presence of local resonances.

Author: M. Oudich	Category: Contributed Oral
Affiliation: UMR CNRS	
Paper #: 0087	Time: 5:15 pm -5:30 pm

Title: Acoustic Metamaterial Plate with Negative Effective Mass Density

Abstract: A phononic metamaterial plate with low frequency resonators is investigated as an effective dispersive medium for acoustic waves. A numerical based effective medium model is used to calculate the plate's effective dynamic mass density as function of the frequency. Strong anisotropy of the mass density matrix is observed around the resonance frequencies where the gaps are opened.

Author: M. Farooqui	Category: Contributed Oral
Affiliation: Ain Shams University	
Paper #: 0116	Time: 5:30 pm -5:45 pm

Title: Sound Attenuation in Ducts using Locally Resonant Periodic Flush Mounted Flexible Silicon Patches

Abstract: Transmission properties of a Phononic crystal composed of patches of silicon aerogel is studied analytically and numerically in this paper. With the help of mathematical models the difference between the Bragg scattering and the locally resonant mechanism was demonstrated. It is also shown that the periodicity of these local resonators also plays role in determining the width of the acoustic band gap.

Author: M. Zubtsov	Category: Contributed Oral
Affiliation: Otto von Guericke University	
Paper #: 0061	Time: 5:45 pm -6:00 pm

Title: On the Nature of Extraordinary Acoustic Transmission through Sub-Wavelength Holes Array.

Abstract: We present experimental and computational evidences for the existence of structural vibrations in periodic solid-liquid composite that combine vibrations in solid with vibrations in neighboring liquid volumes whose dynamics define anomalous response function determining extraordinary acoustic transmission.

Author: B. Figeys	Category: Contributed Oral
Affiliation: IMEC	
Paper #: 0071	Time: 6:00 pm -6:15 pm

Title: Shear Interface Acoustic Wave in Solids Enabled by Acoustic Metamaterials

Abstract: We present for the first time developments supporting the existence of shear waves propagating at the interface between two solids with shear moduli of opposite signs, condition made possible using metamaterials. We indicate the analogy between this wave and surface plasmon polaritons and present the acoustic analog of metal-insulator-metal and insulator-metal-insulator electromagnetic waveguides.

Author: L. M. Garcia-Raffi	Category: Contributed Oral
Affiliation: Universitat Politècnica de València	
Paper #: 0070	Time: 6:15 pm -6:30 pm
Title: Acoustic Fractal Conical Lens Based on Sonic Crystals	

Abstract: This work reports the numerical analysis of an axial symmetric sonic crystal which external shape is based on the Cantor fractal set. In the long wavelength regime the system has an ef-fective refraction index controlled by the filling fraction, so the fractal external shape can control the phases of the transmitted waves. We show here the possibility of multifocal acous-tic lenses as it has been previously observed in optics.

Adjourn 6:30 PM

Wednesday: June 5	Detailed Program Information	
Registration (Amaraua Foyer)	7:30 am - 12:00 pm	
Announcements (Amaraua Conf. Hall)	7:45 am - 8:00 am	
Track 3: Phonon Transport		
•		
Session: 7 (Amaraua Conference Hall)	8:00 am - 10:20 pm	
Session Chair: Baowen Li		
Author: C. M. Sotomayor Torres	Category: Plenary Talk	
Affiliation: Catalan Institute of Nanotechnology	T imes 0.00 cm 0.20 cm	
Paper #: 0156	Time: 8:00 am -8:30 am	
Title: Acoustic Phonons in Silicon Free-Standing Membrane	:: From Slow Phonons to Engineering Thermal Conductivity	
this we investigate the impact on thermal transport in low thermal rectification and storage.	heir dispersion relations simulated and measured. Based on dimensional semiconductors and carry out simulations for	
Author: D. Donadio	Category: Plenary Talk	
Affiliation: Max Planck Institute for Polymer Research	Time: 8:20 cm, 0:00 cm	
Paper #: 0077	Time: 8:30 am -9:00 am	
Title: Phonon Transport in Graphene: Effects of Strain and c	f Finite Temperature Gradients	
graphene is strained.		
Author: I. J. Maasilta	Category: Invited Oral	
Affiliation: University of Jyväskylä		
Paper #: 0035	Time: 9:00 am -9:20 am	
Title: Phononic Crystals for the Control of Thermal Conduct	ance at Sub-Kelvin Temperatures	
Abstract: I will review recent progress in fabrication, measurement and modeling of two- and three dimensional phononic crystals for controlling thermal transport in the sub-Kelvin temperature regime. Initial measurements for 2D hole-array phononic crystal samples show good agreement with the calculated ballistic thermal conductance of the modified phonon eigenmode spectrum. Somewhat surprisingly, the calculation predicts that thermal conduct-ance is enhanced at the ultralow temperature limit below 0.1 K, as compared to a full, uncut membrane.		
hole-array phononic crystal samples show good agreemen modified phonon eigenmode spectrum. Somewhat surpris	ub-Kelvin temperature regime. Initial measurements for 2D at with the calculated ballistic thermal conductance of the ingly, the calculation predicts that thermal conduct-ance is	
hole-array phononic crystal samples show good agreemen modified phonon eigenmode spectrum. Somewhat surpris	ub-Kelvin temperature regime. Initial measurements for 2D at with the calculated ballistic thermal conductance of the ingly, the calculation predicts that thermal conduct-ance is	
hole-array phononic crystal samples show good agreemen modified phonon eigenmode spectrum. Somewhat surpris enhanced at the ultralow temperature limit below 0.1 K, as	ub-Kelvin temperature regime. Initial measurements for 2D at with the calculated ballistic thermal conductance of the ingly, the calculation predicts that thermal conduct-ance is compared to a full, uncut membrane.	
hole-array phononic crystal samples show good agreemen modified phonon eigenmode spectrum. Somewhat surpris enhanced at the ultralow temperature limit below 0.1 K, as Author: A. Struck	ub-Kelvin temperature regime. Initial measurements for 2D at with the calculated ballistic thermal conductance of the ingly, the calculation predicts that thermal conduct-ance is compared to a full, uncut membrane.	
hole-array phononic crystal samples show good agreemen modified phonon eigenmode spectrum. Somewhat surpris enhanced at the ultralow temperature limit below 0.1 K, as Author: A. Struck Affiliation: Hochschule Rhein-Waal	ub-Kelvin temperature regime. Initial measurements for 2D at with the calculated ballistic thermal conductance of the ingly, the calculation predicts that thermal conduct-ance is compared to a full, uncut membrane. Category: Invited Oral Time: 9:20 am -9:40 am	

Author: C. M. Reinke	Category: Invited Oral
Affiliation: Sandia National Laboratories	
Paper #: 0155	Time: 9:40 am -10:00 am
Title: Modified Nanoscale Phonon Transport in Phononic Crystal Devices	

Abstract: We present an analysis of thermal conductivity reduction in micro-scale PnC devices using a method that combines the phonon dispersion of the atomic material lattice with that of the PnC lattice. The theoretical results are compared with thermal conductivity measurements of fabricated PnC samples, with good agreement observed between the thermal transport model and corresponding experimental data.

Author: K. Muralidharan	Category: Invited Oral	
Affiliation: University of Arizona		
Paper #: 0103	Time: 10:00 am -10:20 am	

Title: Analysis of Phonon Mode Lifetime in 1D and 2D Anharmonic Systems

Abstract: In nano-composite systems, high frequency thermal phonon modes are subject to multiple different mechanisms of decay. Of particular importance are effects related to the periodicity of the underlying structure (band-folding effects) and scattering effects related to boundaries, surfaces and interfaces as well as anharmonic effects. Thus, characterizing the thermal response of nanoscale composites requires a rigorous examination of these phenomena. In this work, we elucidate the role that band-folding and boundary scattering as well as anharmonicity play in decreasing the lifetime of high-frequency phonon modes using two novel simulation approaches. Specifically, using spectral energy density (SED)1 band structure calculations, a series of non-linear one-dimensional superlattices of

Coffee Break (Amaraua Foyer)	10:20 am - 10:40 am	
Track 3: Phonon Transport		
Session: 8 (Amaraua Conference Hall)	10:40 am - 1:00 pm	
Session Chair: C. M. Sotomayor Torres		
Author: Z. C. Leseman	Category: Invited Oral	
Affiliation: University of New Mexico		
Paper #: 0162	Time: 10:40 am -11:00 am	

Abstract: Techniques are described for the fabrication and characterization of nanostructured phononic crystals (PnCs). Fabrication of the PnCs is performed in Si while employing a fo-cused ion beam (FIB) to impart the nanostructure. Characterization is performed using a technique wherein the PnC is suspended between two thermally isolated islands. By raising the temperature with respect to the other the thermal conductivity of the PnC can be deter-mined. Results indicate that coherent scattering of phonons is occurring.

Author: O. Bourgeois	Category: Invited Oral
Affiliation: Centre National de la Recherche Scientifique	
Paper #: 0112	Time: 11:00 am -11:20 am

Title: Phonon Thermal Transport in Periodically Structured Nanosystems

Abstract: We report on the transport of thermal phonons in periodic nano-objects. The thermal conductance of suspended nanosystems (nano-engineered membranes, nanowires) has been measured down to very low temperature. It is shown that the presence of periodic structures (corrugation, lattice of holes) may strongly reduce the heat transfer in these nanosystems.

Author: S. Sinha	Category: Invited Oral	
Affiliation: University of Illinois at Urbana-Champaign		
Paper #: 0142	Time: 11:20 am -11:40 am	
Title: Phonon Transport in Periodic 3-Dimensional Nanostructures		

Abstract: We report measurements and modeling of thermal conductivity in periodic three-dimensional dielectric nanostructures: silicon inverse opals. The periodicities and shell thicknesses are in the range 420-900 nm and 18-38 nm respectively. The material thermal conductivity is in the range 5-12 W/mK at 300 K and has an anomalous ~T1.8 dependence at low temperatures, distinct from the typical ~T3 behavior of bulk polycrystalline silicon. Using phonon scattering theory, we show such dependence arising from coherent phonon reflections in the inter-grain region.

Author: R. Chen	Category: Invited Oral
Affiliation: University of California	
Paper #: 0171	Time: 11:40 am -12:00 pm
Title: Thermal and Thermoelectric Transport in T	hin Nanowires
(phonons and electrons) are confined have been	t in small diameter nanowires where both heat and charge carriers rarely probed experimentally due to several changes associated with ent our recent progress on experimental study of thermal conductivity er Ge and Ge-Si nanowires.
Author: Baowen Li	Category: Org. Colloquium
Affiliation: National University of Singapore	
Paper #: 0128	Time: 12:00 pm -12:20 pm
Title: Anomalous Phonon Transport and Anomalo	ous Diffusion
heat in semiconductors and dielectric materials. fundamental law of heat conduction in solids macroscopic heat conduction in the past two h question. Here we give a brief review of the recei heat conduction in low dimensional systems, in	gy transport process in nature. Phonon is the major energy carrier for In analogy to Ohm's law of electrical conduction, Fourier's law is the Although Fourier's law has received great success in describing undred years, its validity in low dimensional systems is still an oper and developments in experimental, theoretical and nu-merical studies op including lattice models and low dimensional nanostructures such as mon-strate that phonons transport in low dimensional systems
Author: M. I. Hussein	Category: Org. Colloquium
Affiliation: University of Colorado Boulder	
Paper #: 0177	Time: 12:20 pm -12:40 pm
Title: Thermal Conductivity Reduction by Nanoph	iononic Metamaterials
	resonant nanophononic metamaterial for the purpose of thermal

Author: E. Abdel-Rahman	Category: Guest Lecture on Thermoacoustics
Affiliation: The American University in Cairo	
Paper #: N/A	Time: 12:40 pm -1:00 pm

Title: TBA

Abstract: TBA

Lunch Break (Kahramana Resturant)

1:00 pm - 3:30 pm

Bloch Lecture		
Session: 9 (Amaraua Conference Hall)	3:30 pm - 4:15 pm	
Session Chair: I. El-Kady		
Author: B. Djafari-Rouhani	Category: Award Lecture	
Affiliation: Université Lille 1 Sciences et Technologies		
Paper #: Bloch-Paper	Time: 3:30 pm -4:15 pm	
Title: Optomechanical interactions in phoxonic cavities		

Abstract: Phoxonic crystals can exhibit dual phononic/photonic band gaps. Therefore, the confinement of both acoustic and optical waves in a phoxonic cavity can allow the enhancement of their interaction. In this paper, we discuss some of our recent theoretical works on the strength of the optomechanic coupling, based on both photoelastic and moving interfaces mechanisms, in different (2D, slabs, strips) phoxonic crystals cavities.

Session: 10 (Amaraua Conference Hall)	4:15 pm - 6:30 pm
Session Chair: I. J. Maasilta	
Author: M. Y. Swinkels	Category: Contributed Oral
Affiliation: Eindhoven University of Technology	
Paper #: 0072	Time: 4:15 pm -4:30 pm

Abstract: Nanowires could be interesting candidates for future thermoelectric materials thanks to the reduced phonon transport in these wires. A full understanding of phonon transport in these small scales is required to take full advantage of this. In this work we will present an approach for investigations on the thermoelectric properties of nanowires.

Author: T. A. Puurtinen	Category: Contributed Oral
Affiliation: University of Jyväskylä	•
Paper #: 0026	Time: 4:30 pm -4:45 pm
Title: Ballistic Heat Transfer in Thin-Film Phononic Crystals	

Abstract: We have measured the thermal transport properties of various thin-film phononic crystals in the sub-Kelvin temperature range using sensitive normal-metal-insulator-superconductor (NIS) tunnel junction thermometry. We have also compared the measurements to numerical results of a ballistic phonon radiation model implemented by the finite element method, and found good agreement.

Author: K. Sääskilahti	Category: Contributed Oral
Affiliation: Aalto University	
Paper #: 0066	Time: 4:45 pm -5:00 pm
Title: Quantum Heat Transfer in Graphene Nanostructures: Self-Consistent Thermal Bath Calculation	

Abstract: We present an extended Green's function method to study phonon heat transfer and apply the method to graphene point contacts. Phonon damping and dephasing are introduced by coupling all atoms to Langevin heat baths, whose temperatures are determined self-consistently. We calculate temperature profiles for various geometries and discuss the im-portance of quantum effects at different temperatures.

Author: P. E. Hopkins	Category: Contributed Oral
Affiliation: University of Virginia	
Paper #: 0052	Time: 5:00 pm -5:15 pm

Title: Einstein Oscillations and Exceptionally Low Thermal Conductivities of Fullerene Derivative PCBM

Abstract: We report on the thermal conductivities of microcrystalline [6,6]-phenyl C61-butyric acid methyl ester (PCBM) thin films from 135 to 387 K as measured by time domain thermoreflectance. Thermal conductivities are independent of temperature above 180 K and less than 0:030+/-0:003 W m-1 K-1 at room temperature. The longitudinal sound speed is determined via picosecond acoustics and is found to be 30% lower than that in C60/C70 fullerite compacts. Using Einstein's model of thermal conductivity, we find the Einstein characteristic frequency of microcrystalline PCBM is 2.88x1012 rad s-1. By comparing our data to previous reports on C60/C70 fullerite compacts, we argue that the molecular tails on the fullerene moieties in our PCBM films are responsible for lowering both the apparent sound **Category: Contributed Oral**

Author: R. Cheaito Affiliation: University of Virginia

Paper #: 0081

Time: 5:15 pm -5:30 pm Title: Experimental Evidence of Crossover from Incoherent to Coherent phonon Scattering in Epitaxial Oxide Superlattices

Abstract: We experimentally demonstrate the theoretically predicted crossover from incoherent to coherent phonon transport in (SrTiO3)m/(CaTiO3)m oxide superlattices by showing a local minimum in phonon thermal conductivity as a function of period spacing in these struc-tures.

Author: F. Döring	Category: Contributed Oral
Affiliation: University of Göttingen	
Paper #: 0039	Time: 5:30 pm -5:45 pm

Title: Interface Design for Minimizing thermal Conductivity by Phonon Blocking in Multilayers

Abstract: Different kinds of multilayers with small layer thicknesses and a high number of interfaces were fabricated by pulsed laser deposition. The thermal conductivities of the grown multilayers were studied using fs-pump-probe reflectivity measurements. In this contribution, the phonon spectra are discussed with respect to the possibility to obtain phonon blocking by multilayer design in order to minimize the thermal conductivity.

Author: A. K. Kushwaha	Category: Contributed Oral
Affiliation: K.N. Govt. P.G. College	
Paper #: 0027	Time: 5:45 pm -6:00 pm

Title: Phonon Spectrum of MnTe, HgTe and Their Mixed Semiconductor MnxHg1-xTe

Abstract: We have calculated the phonon spectrum of MnTe, HgTe and their mixed semiconductor MnxHg1-xTe in the framework of three-body shell model. This model incorporates the effect of the short-range repulsive interactions up to and including the second nearest neighbours, in addition to the long-range Coulombic interactions in the framework of the rigid-shell model with both the ions are polarizable. The calculated phonon spectrum for MnTe, HgTe and MnxHg1xTe are plotted along with their available experimental results. We find an overall good agreement with the experimental results.

Author: J. S. Reparaz	Category: Contributed Oral
Affiliation: Catalan Institute of Nanotechnology	
Paper #: 0048	Time: 6:00 pm -6:15 pm
Title: Si and Ge Membranes Investigated through Raman Thermometry: The Role of Phonon Boundary Scattering and	

ugh Raman Thermometry: The Role of Phonon B Phonon Confinement in 2D Systems

Abstract: The unique thermal properties exhibited by free-standing ultra-thin semiconductor membranes, have recently triggered a considerable amount of research in this field. A precise knowledge of the influence of low dimensionality, chemical composition, degree of crystallinity and surface roughness is essential to tailor the thermal properties of membranes. We investigate the thermal conductivity reduction in Si and Ge free-standing membranes at 300 K as function of thickness, ranging from 6 to 700 nm, using Raman thermometry. This contactless technique is extremely convenient for those cases where electrical techniques are not easily applicable. We show that the thermal conductivity systematically decreases as the membranes thickness decrease, which we show to originate from

Author: D. Schneider	Category: Contributed Oral
Affiliation: Max Planck Institute for Polymer Research	
Paper #: 0040	Time: 6:15 pm -6:30 pm
Title: 1D Hybrid Phononic Bragg-Stacks: Propagation of Hypersound in Soft Periodic Structures*	

Abstract: Soft periodic structures constitute a promising material class to study phononic properties. Here, we focus on 1D hybrid phononic crystals as model system to study fundamentals of elastic wave propagation. Spontaneous Brillouin light scattering (BLS) in combination with theoretical calculations provide full description of phononic band diagrams at hypersonic frequencies.

Adjourn

6:30 PM

* Phononic Crystals Talk

Thursday: June 6 **Detailed Program Information Registration (Amaraua Foyer)** 7:30 am - 12:00 pm 7:45 am - 8:00 am Announcements (Amaraua Conf. Hall) Track 4: Optomechanics and Coupled Phenomena Session: 11 (Amaraua Conference Hall) 8:00 am - 10:20 pm Session Chair: B. Djafari-Rouhani Author: I. E. Psarobas Category: Plenary Talk Affiliation: University of Athens Paper #: 0122 Time: 8:00 am -8:30 am Title: Topology Arguments in Engineering 3D PhoXonic Systems Abstract: Concurrent control of both light and sound through simultaneous photonic-phononic, often called phoxonic, bandgap structures is intended to advance both our understanding as well as our ability to manipulate light with sound and vise versa. Topology arguments set the framework of engineering 3D dual functional phoxonic structures by means of a dual multiple scattering method for classical waves. Author: B. Jusserand **Category: Plenary Talk** Affiliation: Institut des Nanosciences de Paris Time: 8:30 am -9:00 am Paper #: 0176 Title: Confined Acoustical Phonons and Confined Photons in Semiconductor Nanostructures: A Route Towards Very Large Acousto-optical Interactions Abstract: Photon confinement in microcavities is easily transferred to acoustic phonons. We describe here several achievements based on the combination of acoustic and photonic confinement in GaAs/AlAs multilayers and demonstrate high finesse optical cavities as a very promising device with typical optomechanical couplings two order of magnitudes larger than in available systems. Author: D. Navarro-Urrios Category: Invited Oral Affiliation: Catalan Institute of Nanotechnology **Paper #**: 0163 **Time:** 9:00 am -9:20 am Title: Optomechanics in Corrugated Beams with Parabolic Defects Abstract: We report on the optical, mechanical and optomechanical properties of a Silicon based 1D corrugated beam, excited by means of a microlooped tapered optical fiber. The high optical quality factor of the localized photonic modes (Qopt=20000-35000) supported by the structure has allowed the transduction of the thermally activated mechanical motion of the structures. We have observed localized mechanical modes at frequencies up to 7.25 GHz and relatively high mechanical quality factors (Qmec=4700). Category: Invited Oral Author: M. Farhat Affiliation: King Abdullah University of Science and Technology Paper #: 0038 **Time:** 9:20 am -9:40 am Title: Graphene Acousto-optical Plate for Coupling Sound and Light at THz Frequencies

Abstract: We propose a novel device that exploits extra-ordinary properties of graphene to couple elastic vibration to light. The bending biharmonic wave that could be excited on a very thin sheet of graphene forms a quasi-grating that interacts with incident light and permits the excitation of surface plasmons polaritons. Many applications such as sensing and bio-detection could be envisaged.

Author: N. Kiesel	Category: Invited Oral
Affiliation: University of Vienna	
Paper #: 0136	Time: 9:40 am -10:00 am

Title: Towards High-Q Cavity-optomechanics with Levitated Nanospheres

Abstract: Nanoparticles, optically trapped in ultra-high vacuum and dispersively coupled to a high-finesse Fabry-Perot cavity, have recently been proposed as a new light-mechanics interface. This interface promises, amongst others, to operate optomechanical quantum information protocols in a room-temperature environment and to build novel ultrasensitive force sensors. We present first experiments in this direction.

Author: N. Piro	Category: Invited Oral
Affiliation: École Polytechnique Fédérale de Lausanne	
Paper #: 0183	Time: 10:00 am -10:20 am

Title: Quantum-Coherent Coupling of a Mechanical Oscillator to an Optical Cavity Mode

Abstract: We demonstrate an optomechanical microresonator in which optical and mechanical degrees of freedom exchange energy at a rate exceeding the relevant decoherence rates in the system, enabling quantum control of a mechanical oscillator with light.

Coffee Break (Amaraua Foyer)	10:20 am - 10:40 am
Track 13: Optomechanics and Coupled Phenomena	
Session: 12 (Amaraua Conference Hall)	10:40 am - 1:00 pm
Session Chair: I. E. Psarobas	
Author: R. M. Camacho	Category: Invited Oral
Affiliation: Sandia National Laboratories	
Paper #: 0140	Time: 10:40 am -11:00 am

Abstract: In this talk, I will describe recent investigations into the effects of disorder in optomechanical systems. In particular, I will discuss disorder induced opto-mechanical coupling in photononic/phononic crystal structures, group velocity effects, and connections to Anderson localization.

Author: S. Ludwig	Category: Invited Oral	
Affiliation: Ludwig-Maximilians-Universität		
Paper #: 0009	Time: 11:00 am -11:20 am	
Title: The Quantum Dot Single-Phonon Detector		

Abstract: Recent developments make the idea of electronic-phononic hybrid quantum circuits an interesting prospect. One of the main challenges is the realization of nanoscale single-phonon detectors. We demonstrate single-phonon detection in laterally defined coupled quantum dots in semiconductor quantum circuits.

Author: P. V. Santos	Category: Invited Oral
Affiliation: Paul-Drude-Insitut für Festkörperelektronik	
Paper #: 0004	Time: 11:20 am -11:40 am

Title: Exciton Control and Transport by Acoustic Fields

Abstract: Surface phonons in the form of surface acoustic waves are used to store and transport excitons over millimeter distances in GaAs quantum well structures. By combining SAW beams along different crystallographic directions it becomes possible to realize novel electro-optic functionalities based on exciton transport such as the routing of photonic signals.

Author: S. Benchabane	Category: Invited Oral
Affiliation: Université de Franche-Comté	
Paper #: 0089	Time: 11:40 am -12:00 pm

Title: Surface Elastic Wave Confinement in Defect-based and Mass-loaded Phononic Waveguides

Abstract: Ways to achieve efficient three-dimensional surface acoustic wave guidance and confinement have already been reported in the phononic crystal literature. In this talk, we will discuss two possible means of reaching this objective by using either 2D Bragg-type phononic crystals or by exploiting the mass-loading effect in 1D periodical structure.

Author: B. Djafari-Rouhani	Category: Org. Colloquium
Affiliation: Le Centre National de la Recherche Scientifique	
Paper #: 0050	Time: 12:00 pm -12:20 pm

Title: Optomechanical Interactions in Phoxonic Cavities

Abstract: Phoxonic crystals can exhibit dual phononic/photonic band gaps. Therefore, the confinement of both acoustic and optical waves in a phoxonic cavity can allow the enhancement of their interaction. In this paper, we discuss our recent theoretical works on the strength of the optomechanic coupling, based on both photoelastic and moving boundaries effects, in differ-ent cavities in various (2D, slabs, strips) phoxonic crystals.

Author: I. El-Kady	Category: Org. Colloquium
Affiliation: Sandia National Laboratories	
Paper #: 0178	Time: 12:20 pm -12:40 pm
Title: On-Chip Quantum Phonodynamics, the Sound-Based Analogue of Quantum Electrodynamics: Realization of a	
"Phoniton"	

Abstract: Phonons, due to their unique nonlinear properties, enable new opportunities for quantum devices and physics. We propose a phonon-based, solid-state analogue of the cavity-polariton QED system. Despite having never been practically realized, qubits based on this half-sound half-matter quasi-particle, or the so called "phoniton", have been predicted to outcompete quantum dot-based qubits and approach circuit QED performance in the MHz frequencies. In this talk we discuss our attempts at the first realization of a "phoniton".

Conference Photograph	12:40 pm - 1:00pm
Lunch Break (Kahramana Resturant)	1:00 pm - 3:30 pm

Brillouin Lecture		
Session: 13 (Amaraua Conference Hall)	3:30 pm - 4:15 pm	
Session Chair: M. I. Hussein		
Author(s): P. Sheng, C. T. Chan, Z. Yang	Category: Award Lecture	
Affiliation: Hong Kong University of Science and Techno		
Paper #: Brillouin-Paper	Time: 3:30 pm -4:15 pm	
Title: Acoustic Metamaterials		
Abstract: We present the basic concept of acoustic metamaterials and their initial realization in the form of locally resonant sonic materials. The development of acoustic metamaterials has led to the realization of many acoustic and elastic functionalities previously thought to be not possible, such as acoustic cloaking and the attenuation of sound in the 100 to 1000 Hz range by using thin membranes.		
Track 3: Optomechanics and Coupled Phene Session: 14 (Amoreus Conference Hell)		
Session: 14 (Amaraua Conference Hall)	4:15 pm - 6:30 pm	
Session Chair: S. Ludwig Author: R. Braive	Category: Contributed Oral	
Affiliation: Le Centre National de la Recherche Scientifiq		
Paper #: 0018	Time: 4:15 pm -4:30 pm	
Title: Optomechanics with Photonic Crystals Slab Mirrors and Cavities		
Abstract: We investigate optomechanical effects in photonic crystal slab membranes. For slabs embedding a photonic crystal cavity, two families of mechanical modes are identified: drum modes and vibrations localized within the cavity core. For slabs acting as an end mirror in a Fabry-Perot cavity, cold-damping techniques allowed to cool the fundamental drum mode by a factor of two from 300 K.		
Author: S. El-jallal	Category: Contributed Oral	
Affiliation: Le Centre National de la Recherche Scientifiq	ane	
Paper #: 0076	Time: 4:30 pm -4:45 pm	
Title: Acousto-optic Interactions in 2D Silicon and Gallium Arsenide PhoXonic Cavities		
Abstract: We study the acousto-optic interactions in 2D Si and GaAs phoXonic crystal cavities. We take into account both the moving boundaries and photoelastic effects. The coupling is obtained by calculating the modulation of each optical cavity mode by each acoustic cavity mode. The photoelastic contribution is discussed in view of the strong variations of the photoelastic coefficients near the band gap.		
Author: M. Ismail	Category: Contributed Oral	

Affiliation: University of Glasgow	
Paper #: 0180	Time: 4:45 pm -5:00 pm

Title: Waves Confinement in Piezoelectric Phononic Cavity

Abstract: The existence of complete band gap has been demonstrated theoretically using Plane Wave Expansion (PWE) method in a two-dimensional triangular lattice piezoelectric phononic crystal consists of cylindrical tungsten pillars deposited over lithium niobate (LiNbO3) slab. Several complete band gaps have been observed for different dimensions of the slab and pillars. It is shown that LiNbO3 stubbed with the tungsten pillars create dual complete band gaps with relative bandwidth of 31.5 % and 26.6 %. The confinement of the waves within a single defect of this piezoelectric phononic crystal structure has also been theoretically demonstrated.

Session: 15 (Amaraua Conference Hall)	5:00 pm - 5:15 pm
Session Chair: I. El-Kady / M. I. Hussein	
Phononics 2015/2017 Announcement	5:00 pm - 5:15pm

Poster Session (Amaraua Foyer)	
Session: 16 (Amaraua Conference Hall)	5:15 pm - 7:15 pm
Session Chair: C. Reinke	
Author: M. Y. Wang	Category: Poster #1
Affiliation: Dept. of Mechanical & Automation Eng., The C	
Paper #: 2	Time: 5:15 pm - 7:15 pm
Title: Band Gaps in Periodic Flexural Beams With Multi-DO	OF/Continuum Local Resonators
Author: Y. Y. Kim	Category: Poster #2
Affiliation: WCU Multiscale Mechanical Design Devision, S	Seoul National University
Paper #: 0006	Time: 5:15 pm - 7:15 pm
Title: Phononic Crystal Tailoring for Single-Mode Ultrason	ic Wave Excitation
Author: M. V. Golub	Category: Poster #3
Affiliation: Wave Propagation, Reflection and Filtering in	Functionally Graded Phononic Crystals
Paper #: 0010	Time: 5:15 pm - 7:15 pm
Title: Wave Propagation, Reflection and Filtering in Funct	ionally Graded Phononic Crystals
Author: M. H. Ben Ghozlen	Category: Poster #4
Affiliation: Materials Physics Laboratory, Faculty of Science	ces, Sfax university
Paper #: 0015	Time: 5:15 pm - 7:15 pm
Title: Combination of PWE and Stiffness Matrix Methods	to Study Transmission Properties and Guided Modes in Two
Dimensional Phononic Plates	
Author: I. Robert-Philip	Category: Poster #5
Affiliation: Laboratoire de Photonique et Nanostructures	
Paper #: 0019	Time: 5:15 pm - 7:15 pm
Title: Non-linear Mechanical Response of Photonic Crysta	
Author: J. O. Vasseur	Category: Poster #6
Affiliation: Institut d'Electronique, de Microélectronique	et de Nanotechnologie
Paper #: 0022	Time: 5:15 pm - 7:15 pm
Title: The layer-multiple-scattering Method as Applied to	Two-dimensional Phononic Crystals
Author: YF. Wang	Category: Poster #7
Affiliation: Institute of Engineering Mechanics, Beijing Jia	otong University, Beijing
Paper #: 0023	Time: 5:15 pm - 7:15 pm
Title: Complex Band Structures of Two-Dimensional Visco	elastic Phononic Crystals Obtained by Using Finite Element
Method	
Author: TX. Ma	Category: Poster #8
Affiliation: Institute of Engineering Mechanics, Beijing Jia	
Paper #: 0024	Time: 5:15 pm - 7:15 pm
Title: Engineering Dual Phononic and Photonic Bandgaps	
Author: A. A. Kutsenko	Category: Poster #9
Affiliation: Universite de Bordeaux, Institut de Mecaniqu	e et d'Ingenierie de Bordeaux
Paper #: 0033	Time: 5:15 pm - 7:15 pm
Title: Discrete Periodic Lattice with Defects	
Author: P. Méresse	Category: Poster #10
Affiliation: DCNS Research, Le Mourillon Rond point de l'	
Paper #: 0043	Time: 5:15 pm - 7:15 pm
Title: Propagation Number in Periodic Structures Including Losses	
Author: J. Gomis-Bresco	Category: Poster #11
Affiliation: Catalan Institute of Nanotechnology	
Paper #: 0056	Time: 5:15 pm - 7:15 pm
Title: 1D Phononic Corrugated Cavities in Si Nanobeams:	Design of the Confined Modes in a Full Band gap

Author: I. Boiragi	Category: Poster #12	
Affiliation: Photonics Department, Society for Applied Micr		
Paper #: 0065	Time: 5:15 pm - 7:15 pm	
Title: Development of Photoacoustic Gas Cell for Trace Gas	Measurement by IR Laser Absorption Technique	
Author: B. Figeys	Category: Poster #13	
Affiliation: IMEC and KU Leuven, TELEMIC		
Paper #: 0082	Time: 5:15 pm - 7:15 pm	
Title: Process Tolerant Design of a BAW Resonator via Acou	stic Metamaterial Engineering	
Author: A. Cebrecos	Category: Poster #14	
Affiliation: Instituto de investigación para la Gestión Integra	ada de Zonas Costeras, Universitat de Valéncia	
Paper #: 0091	Time: 5:15 pm - 7:15 pm	
Title: Collimation of Ultrasound Beams behind 3D Sonic Cry	stal	
Author: B. Bonello	Category: Poster #15	
Affiliation: Institut des NanoSciences de Paris (INSP-UMR C		
Paper #: 0095	Time: 5:15 pm - 7:15 pm	
Title: Scattering of Lamb Waves by Isolated Hole or Pillar: To	owards an Acoustic Metamaterial	
Author: P. Anzel	Category: Poster #16	
Affiliation: Division of Engineering and Applied Science, Cal	ifornia Institute of Technology	
Paper #: 0097	Time: 5:15 pm - 7:15 pm	
Title: Development of a Nonlinear Acoustic Phased Array ar	nd its Interaction with Thin Plates	
Author: R. Picó	Category: Poster #17	
Affiliation: Instituto de investigaciónpara la Gestión Integra	da de zonas Costeras, Universitat de València	
Paper #: 0104	Time: 5:15 pm - 7:15 pm	
Title: AntiBandgaps in Acoustic Periodic Loss Media		
Author: P. H. Otsuka	Category: Poster #18	
Affiliation: Division of Applied Physics, Faculty of Engineerin	ng, Hokkaido University	
Paper #: 0105	Time: 5:15 pm - 7:15 pm	
Title: k-Space Imaging of Phonon Propagation in Phononic (Crystal Waveguides	
Author: S. Degraeve	Category: Poster #19	
Affiliation: IEMN, Institut d'Electronique, de Microelectroni		
Paper #: 0110	Time: 5:15 pm - 7:15 pm	
Title: Tunable One-Dimensional Piezoelectric Phononic Crys	stals	
Author: Y. Pennec	Category: Poster #20	
Affiliation: IEMN, UMR CNRS 8520, Université de Lille		
Paper #: 0113	Time: 5:15 pm - 7:15 pm	
Title: Wide Surface Acoustic Wave Bandgaps for Conical Pillars on a Piezoelectric Substrate		
Author: V. Romero-García	Category: Poster #21	
Author: V. Romero-García Affiliation: Instituto de Investigación para la Gestión Integra	Category: Poster #21 ada de zonas Costeras, Universitat de València	
Affiliation: Instituto de Investigación para la Gestión Integra	ada de zonas Costeras, Universitat de València	
	ada de zonas Costeras, Universitat de València Time: 5:15 pm - 7:15 pm	
Affiliation: Instituto de Investigación para la Gestión Integra Paper #: 0152 Title: Tunable Acoustic Waveguides in Sonic Crystals Made	ada de zonas Costeras, Universitat de València Time: 5:15 pm - 7:15 pm of Square-Rod Scatterers: Experiments and Theory	
Affiliation: Instituto de Investigación para la Gestión Integra Paper #: 0152 Title: Tunable Acoustic Waveguides in Sonic Crystals Made Author: A. Mehany	ada de zonas Costeras, Universitat de València Time: 5:15 pm - 7:15 pm	
 Affiliation: Instituto de Investigación para la Gestión Integra Paper #: 0152 Title: Tunable Acoustic Waveguides in Sonic Crystals Made Author: A. Mehany Affiliation: XXXXX 	ada de zonas Costeras, Universitat de València Time: 5:15 pm - 7:15 pm of Square-Rod Scatterers: Experiments and Theory Category: Poster #22	
Affiliation: Instituto de Investigación para la Gestión Integra Paper #: 0152 Title: Tunable Acoustic Waveguides in Sonic Crystals Made Author: A. Mehany	ada de zonas Costeras, Universitat de València Time: 5:15 pm - 7:15 pm of Square-Rod Scatterers: Experiments and Theory	

Author: R. Khajehtourian	Category: Poster #23
Affiliation: Department of Aerospace Engineering Sciences,	University of Colorado Boulder
Paper #: 0175	Time: 5:15 pm - 7:15 pm
Title: Nonlinear Locally Resonant Metamaterials: Modeling and Dispersion Characteristics	
Adjourn	7:15 PM
Conference Banquet (Bedouin Night)	7:30 PM

Announcements (Amaraua Conf. Hall)	Detailed Program Information	
	7:45 am - 8:00 am	
Track 5: Periodic Structures		
Session: 17 (Amaraua Conference Hall)	8:00 am - 10:20 pm	
Session Chair: A. Adibi		
Author: A. G. Every	Category: Plenary Talk	
Affiliation: University of the Witwatersrand		
Paper #: 0058	Time: 8:00 am -8:30 am	
Fitle: Guided Waves at Periodically-Structured Surfaces and Interfaces of Solids		
	periodic structures in solids, with particular attention given surface gratings consisting of parallel metal strips mounted	
Author: A. Baz	Category: Plenary Talk	
Affiliation: University of Maryland		
Paper #: 0151	Time: 8:30 am -9:00 am	
Title: Bio-Inspired Active Acoustic Fluidic Cloak		
networks of pressurized channels manufactured to form a composite cloak that can render objects acoustically invisible. The theory governing the operation of this class of cloaks is presented and applied to control the propagation of sound inside aircraft fuselages.		
	f cloaks is presented and applied to control the propagation Category: Invited Oral	
of sound inside aircraft fuselages.		
of sound inside aircraft fuselages. Author: G. M. Hulbert		
of sound inside aircraft fuselages. Author: G. M. Hulbert Affiliation: University of Michigan	Category: Invited Oral Time: 9:00 am -9:20 am	
of sound inside aircraft fuselages. Author: G. M. Hulbert Affiliation: University of Michigan Paper #: 0146 Title: Wave Propagation in Periodic Microstructured Compo Abstract: Novel composite materials have been developed high damping. These materials are considered herein for the	Category: Invited Oral Time: 9:00 am -9:20 am	
of sound inside aircraft fuselages. Author: G. M. Hulbert Affiliation: University of Michigan Paper #: 0146 Title: Wave Propagation in Periodic Microstructured Compo Abstract: Novel composite materials have been developed high damping. These materials are considered herein for the high stiffness and high damping attributes. Several dij applications for vibration and wave mitigation. Author: A. S. Phani	Category: Invited Oral Time: 9:00 am -9:20 am osite Materials at the University of Michigan that provide high stiffness and eir wave attenuation characteristics, while maintaining their	
of sound inside aircraft fuselages. Author: G. M. Hulbert Affiliation: University of Michigan Paper #: 0146 Title: Wave Propagation in Periodic Microstructured Compo Abstract: Novel composite materials have been developed high damping. These materials are considered herein for the high stiffness and high damping attributes. Several dij applications for vibration and wave mitigation. Author: A. S. Phani Affiliation: University of British Columbia	Category: Invited Oral Time: 9:00 am -9:20 am osite Materials at the University of Michigan that provide high stiffness and eir wave attenuation characteristics, while maintaining their fferent designs are presented to illustrate the material Category: Invited Oral	
of sound inside aircraft fuselages. Author: G. M. Hulbert Affiliation: University of Michigan Paper #: 0146 Title: Wave Propagation in Periodic Microstructured Compo Abstract: Novel composite materials have been developed high damping. These materials are considered herein for the high stiffness and high damping attributes. Several dij applications for vibration and wave mitigation. Author: A. S. Phani	Category: Invited Oral Time: 9:00 am -9:20 am osite Materials at the University of Michigan that provide high stiffness and eir wave attenuation characteristics, while maintaining their fferent designs are presented to illustrate the material	
of sound inside aircraft fuselages. Author: G. M. Hulbert Affiliation: University of Michigan Paper #: 0146 Title: Wave Propagation in Periodic Microstructured Compo Abstract: Novel composite materials have been developed high damping. These materials are considered herein for the high stiffness and high damping attributes. Several dij applications for vibration and wave mitigation. Author: A. S. Phani Affiliation: University of British Columbia	Category: Invited Oral Time: 9:00 am -9:20 am osite Materials at the University of Michigan that provide high stiffness and eir wave attenuation characteristics, while maintaining their fferent designs are presented to illustrate the material Category: Invited Oral Time: 9:20 am -9:40 am	

Author: J. S. Jensen	Category: Invited Oral	
Affiliation: Technical University of Denmark		
Paper #: 0064	Time: 9:40 am -10:00 am	
Title: Topology Optimization of Bandgap Materials for Loss	Factor, Stiffness and Manufacturability	
Abstract: We use topology optimization to design composites for high loss factor and high stiffness. Additionally, we address the issue of manufacturability using additive manufacturing. The optimization is done using an iterative gradient-based procedure based on the solution of complex k(¹ / ₂)-eigenvalue FE problems. The formulation facilitates		
the design of composites with a low-loss metallic material of		
Author: A. Spadoni	Category: Invited Oral	
Affiliation: École Polytechnique Fédérale de Lausanne		
Paper #: 0084	Time: 10:00 am -10:20 am	
Title: Wave Propagation in Cellular Solids		
Abstract: Engineering wave dispersion is elastic media co	an be achieved by modulation of material properties or by	
	the first case large dimensions are needed to accommodate	
	ile in the second case manufacturing is a significant hurdle.	
	cessary for widespread employment of engineered media.	
	of wave-propagation characteristics in solids since they are	
	ch microstructure readily resonates for practical frequencies	
leading to resonant-scattering which is a key phenomenon		
Coffee Break (Amaraua Foyer)	10:20 am - 10:40 am	
Track 5: Periodic Structures		
Session: 18 (Amaraua Conference Hall)	10:40 am - 1:00 pm	
Session Chair: A. G. Every		
Author: M. V. Golub	Category: Invited Oral	
Attiliation: Kuban State University		
Affiliation: Kuban State University Paper #: 0003	Time: 10:40 am -11:00 am	
Affiliation: Kuban State University Paper #: 0003 Title: Propagation of Harmonic Elastic Waves in Layered Ph	Time: 10:40 am -11:00 am ononic Crystals and Wave Diffraction by Damages	
Paper #: 0003 Title: Propagation of Harmonic Elastic Waves in Layered Ph	ononic Crystals and Wave Diffraction by Damages	
Paper #: 0003 Title: Propagation of Harmonic Elastic Waves in Layered Ph Abstract: The paper investigates the time-harmonic propa	ononic Crystals and Wave Diffraction by Damages gation of 2D plane waves in periodically multi-layered elastic	
Paper #: 0003 Title: Propagation of Harmonic Elastic Waves in Layered Ph Abstract: The paper investigates the time-harmonic propa composites with strip-like damages. At first band-gaps for	ononic Crystals and Wave Diffraction by Damages gation of 2D plane waves in periodically multi-layered elastic r non-damaged phononic crystals are analyzed. Then three	
Paper #: 0003 Title: Propagation of Harmonic Elastic Waves in Layered Ph Abstract: The paper investigates the time-harmonic propa composites with strip-like damages. At first band-gaps fo kinds of damages are considered: single crack, periodic ar	ononic Crystals and Wave Diffraction by Damages gation of 2D plane waves in periodically multi-layered elastic r non-damaged phononic crystals are analyzed. Then three ray of cracks and distributed delaminations. The total wave	
Paper #: 0003 Title: Propagation of Harmonic Elastic Waves in Layered Ph Abstract: The paper investigates the time-harmonic propa composites with strip-like damages. At first band-gaps fo kinds of damages are considered: single crack, periodic ar field in the damaged structure is written as a sum of the	ononic Crystals and Wave Diffraction by Damages gation of 2D plane waves in periodically multi-layered elastic r non-damaged phononic crystals are analyzed. Then three ray of cracks and distributed delaminations. The total wave incident wave field described by the transfer matrix method	
Paper #: 0003 Title: Propagation of Harmonic Elastic Waves in Layered Ph Abstract: The paper investigates the time-harmonic propa composites with strip-like damages. At first band-gaps fo kinds of damages are considered: single crack, periodic ar field in the damaged structure is written as a sum of the and the scattered wave field represented as a Fourier integ	ononic Crystals and Wave Diffraction by Damages gation of 2D plane waves in periodically multi-layered elastic r non-damaged phononic crystals are analyzed. Then three ray of cracks and distributed delaminations. The total wave incident wave field described by the transfer matrix method gral convolution of the crack-opening-displacements and the	
Paper #: 0003 Title: Propagation of Harmonic Elastic Waves in Layered Ph Abstract: The paper investigates the time-harmonic propa composites with strip-like damages. At first band-gaps fo kinds of damages are considered: single crack, periodic ar field in the damaged structure is written as a sum of the and the scattered wave field represented as a Fourier integ Green's matrix of the multi-layered structure. The effect.	ononic Crystals and Wave Diffraction by Damages gation of 2D plane waves in periodically multi-layered elastic r non-damaged phononic crystals are analyzed. Then three ray of cracks and distributed delaminations. The total wave incident wave field described by the transfer matrix method gral convolution of the crack-opening-displacements and the s of the incidence angle, crack location and crack size are	
Paper #: 0003 Title: Propagation of Harmonic Elastic Waves in Layered Ph Abstract: The paper investigates the time-harmonic propa composites with strip-like damages. At first band-gaps fo kinds of damages are considered: single crack, periodic ar field in the damaged structure is written as a sum of the and the scattered wave field represented as a Fourier integ Green's matrix of the multi-layered structure. The effect investigated. The paper focuses on resonance motion and la	ononic Crystals and Wave Diffraction by Damages gation of 2D plane waves in periodically multi-layered elastic r non-damaged phononic crystals are analyzed. Then three ray of cracks and distributed delaminations. The total wave incident wave field described by the transfer matrix method gral convolution of the crack-opening-displacements and the s of the incidence angle, crack location and crack size are ocalization phenomena in a stack of elastic layers weakened	
Paper #: 0003 Title: Propagation of Harmonic Elastic Waves in Layered Ph Abstract: The paper investigates the time-harmonic propa composites with strip-like damages. At first band-gaps fo kinds of damages are considered: single crack, periodic ar field in the damaged structure is written as a sum of the and the scattered wave field represented as a Fourier integ Green's matrix of the multi-layered structure. The effects investigated. The paper focuses on resonance motion and la Author: S. Gonella	ononic Crystals and Wave Diffraction by Damages gation of 2D plane waves in periodically multi-layered elastic r non-damaged phononic crystals are analyzed. Then three ray of cracks and distributed delaminations. The total wave incident wave field described by the transfer matrix method gral convolution of the crack-opening-displacements and the s of the incidence angle, crack location and crack size are	
Paper #: 0003Title: Propagation of Harmonic Elastic Waves in Layered PhAbstract: The paper investigates the time-harmonic propacomposites with strip-like damages. At first band-gaps fokinds of damages are considered: single crack, periodic arfield in the damaged structure is written as a sum of theand the scattered wave field represented as a Fourier integGreen's matrix of the multi-layered structure. The effectinvestigated. The paper focuses on resonance motion and IAuthor: S. GonellaAffiliation: University of Minnesota	ononic Crystals and Wave Diffraction by Damages gation of 2D plane waves in periodically multi-layered elastic r non-damaged phononic crystals are analyzed. Then three ray of cracks and distributed delaminations. The total wave incident wave field described by the transfer matrix method gral convolution of the crack-opening-displacements and the s of the incidence angle, crack location and crack size are ocalization phenomena in a stack of elastic layers weakened Category: Invited Oral	
Paper #: 0003 Title: Propagation of Harmonic Elastic Waves in Layered Ph Abstract: The paper investigates the time-harmonic propa composites with strip-like damages. At first band-gaps fo kinds of damages are considered: single crack, periodic ar field in the damaged structure is written as a sum of the and the scattered wave field represented as a Fourier integ Green's matrix of the multi-layered structure. The effect investigated. The paper focuses on resonance motion and la Atthor: S. Gonella Affiliation: University of Minnesota Paper #: 0101	ononic Crystals and Wave Diffraction by Damages gation of 2D plane waves in periodically multi-layered elastic r non-damaged phononic crystals are analyzed. Then three ray of cracks and distributed delaminations. The total wave incident wave field described by the transfer matrix method gral convolution of the crack-opening-displacements and the s of the incidence angle, crack location and crack size are ocalization phenomena in a stack of elastic layers weakened Category: Invited Oral Time: 11:00 am -11:20 am	
Paper #: 0003Title: Propagation of Harmonic Elastic Waves in Layered PhAbstract: The paper investigates the time-harmonic propacomposites with strip-like damages. At first band-gaps fokinds of damages are considered: single crack, periodic arfield in the damaged structure is written as a sum of theand the scattered wave field represented as a Fourier integGreen's matrix of the multi-layered structure. The effectinvestigated. The paper focuses on resonance motion and IAuthor: S. GonellaAffiliation: University of Minnesota	ononic Crystals and Wave Diffraction by Damages gation of 2D plane waves in periodically multi-layered elastic r non-damaged phononic crystals are analyzed. Then three ray of cracks and distributed delaminations. The total wave incident wave field described by the transfer matrix method gral convolution of the crack-opening-displacements and the s of the incidence angle, crack location and crack size are ocalization phenomena in a stack of elastic layers weakened Category: Invited Oral Time: 11:00 am -11:20 am	
Paper #: 0003Title: Propagation of Harmonic Elastic Waves in Layered PhAbstract: The paper investigates the time-harmonic propacomposites with strip-like damages. At first band-gaps fokinds of damages are considered: single crack, periodic arfield in the damaged structure is written as a sum of theand the scattered wave field represented as a Fourier integGreen's matrix of the multi-layered structure. The effect.investigated. The paper focuses on resonance motion and IAuthor: S. GonellaAffiliation: University of MinnesotaPaper #: 0101Title: Spectro-Spatial Features as Detectors and Classifiers ofAbstract: Wave propagation in monoatomic chains withspectral phononic characteristics. An inverse problem to dthe spectro-spatial features of wave propaga-tion. The	ononic Crystals and Wave Diffraction by Damages gation of 2D plane waves in periodically multi-layered elastic r non-damaged phononic crystals are analyzed. Then three ray of cracks and distributed delaminations. The total wave incident wave field described by the transfer matrix method gral convolution of the crack-opening-displacements and the s of the incidence angle, crack location and crack size are ocalization phenomena in a stack of elastic layers weakened Category: Invited Oral Time: 11:00 am -11:20 am	
Paper #: 0003 Title: Propagation of Harmonic Elastic Waves in Layered Ph Abstract: The paper investigates the time-harmonic propa composites with strip-like damages. At first band-gaps fo kinds of damages are considered: single crack, periodic ar field in the damaged structure is written as a sum of the and the scattered wave field represented as a Fourier integ Green's matrix of the multi-layered structure. The effect. investigated. The paper focuses on resonance motion and I Author: S. Gonella Affiliation: University of Minnesota Paper #: 0101 Title: Spectro-Spatial Features as Detectors and Classifiers of Abstract: Wave propagation in monoatomic chains with spectral phononic characteristics. An inverse problem to d the spectro-spatial features of wave propaga-tion. The periodic system consisting of monoatomic spheres in co demonstrate the applicability of this inverse problem.	ononic Crystals and Wave Diffraction by Damages gation of 2D plane waves in periodically multi-layered elastic r non-damaged phononic crystals are analyzed. Then three ray of cracks and distributed delaminations. The total wave incident wave field described by the transfer matrix method gral convolution of the crack-opening-displacements and the s of the incidence angle, crack location and crack size are ocalization phenomena in a stack of elastic layers weakened Category: Invited Oral Time: 11:00 am -11:20 am of Nonlinearity in Periodic Chains quadratic nonlinearity is analyzed to determine spatial and etermine the nonlinear coefficient is then obtained by using application of this inverse problem is demonstrated for a ntact. Experimental characterization is also considered to	
Paper #: 0003 Title: Propagation of Harmonic Elastic Waves in Layered Ph Abstract: The paper investigates the time-harmonic propa composites with strip-like damages. At first band-gaps fo kinds of damages are considered: single crack, periodic ar field in the damaged structure is written as a sum of the and the scattered wave field represented as a Fourier integ Green's matrix of the multi-layered structure. The effect: investigated. The paper focuses on resonance motion and l Author: S. Gonella Affiliation: University of Minnesota Paper #: 0101 Title: Spectro-Spatial Features as Detectors and Classifiers of Abstract: Wave propagation in monoatomic chains with spectral phononic characteristics. An inverse problem to d the spectro-spatial features of wave propaga-tion. The periodic system consisting of monoatomic spheres in co demonstrate the applicability of this inverse problem.	ononic Crystals and Wave Diffraction by Damages gation of 2D plane waves in periodically multi-layered elastic r non-damaged phononic crystals are analyzed. Then three ray of cracks and distributed delaminations. The total wave incident wave field described by the transfer matrix method gral convolution of the crack-opening-displacements and the s of the incidence angle, crack location and crack size are ocalization phenomena in a stack of elastic layers weakened Category: Invited Oral Time: 11:00 am -11:20 am of Nonlinearity in Periodic Chains quadratic nonlinearity is analyzed to determine spatial and etermine the nonlinear coefficient is then obtained by using application of this inverse problem is demonstrated for a	
Paper #: 0003Title: Propagation of Harmonic Elastic Waves in Layered PhAbstract: The paper investigates the time-harmonic propacomposites with strip-like damages. At first band-gaps fokinds of damages are considered: single crack, periodic arfield in the damaged structure is written as a sum of theand the scattered wave field represented as a Fourier integGreen's matrix of the multi-layered structure. The effect.investigated. The paper focuses on resonance motion and lAuthor: S. GonellaAffiliation: University of MinnesotaPaper #: 0101Title: Spectro-Spatial Features as Detectors and Classifiers ofAbstract: Wave propagation in monoatomic chains withspectral phononic characteristics. An inverse problem to dthe spectro-spatial features of wave propaga-tion. Theperiodic system consisting of monoatomic spheres in codemonstrate the applicability of this inverse problem.Author: A. AdibiAffiliation: Georgia Institute of Technology	ononic Crystals and Wave Diffraction by Damages gation of 2D plane waves in periodically multi-layered elastic r non-damaged phononic crystals are analyzed. Then three ray of cracks and distributed delaminations. The total wave incident wave field described by the transfer matrix method gral convolution of the crack-opening-displacements and the s of the incidence angle, crack location and crack size are ocalization phenomena in a stack of elastic layers weakened Category: Invited Oral Time: 11:00 am -11:20 am of Nonlinearity in Periodic Chains quadratic nonlinearity is analyzed to determine spatial and etermine the nonlinear coefficient is then obtained by using application of this inverse problem is demonstrated for a ntact. Experimental characterization is also considered to Category: Invited Oral	
Paper #: 0003 Title: Propagation of Harmonic Elastic Waves in Layered Ph Abstract: The paper investigates the time-harmonic propa composites with strip-like damages. At first band-gaps fo kinds of damages are considered: single crack, periodic ar field in the damaged structure is written as a sum of the sand the scattered wave field represented as a Fourier integ Green's matrix of the multi-layered structure. The effects investigated. The paper focuses on resonance motion and I Author: S. Gonella Affiliation: University of Minnesota Paper #: 0101 Title: Spectro-Spatial Features as Detectors and Classifiers of Abstract: Wave propagation in monoatomic chains with spectral phononic characteristics. An inverse problem to d the spectro-spatial features of wave propaga-tion. The periodic system consisting of monoatomic spheres in co demonstrate the applicability of this inverse problem. Author: A. Adibi Affiliation: Georgia Institute of Technology Paper #: 0150	ononic Crystals and Wave Diffraction by Damages gation of 2D plane waves in periodically multi-layered elastic r non-damaged phononic crystals are analyzed. Then three ray of cracks and distributed delaminations. The total wave incident wave field described by the transfer matrix method gral convolution of the crack-opening-displacements and the s of the incidence angle, crack location and crack size are ocalization phenomena in a stack of elastic layers weakened Category: Invited Oral Time: 11:00 am -11:20 am of Nonlinearity in Periodic Chains quadratic nonlinearity is analyzed to determine spatial and etermine the nonlinear coefficient is then obtained by using application of this inverse problem is demonstrated for a ntact. Experimental characterization is also considered to Category: Invited Oral Time: 11:20 am -11:40 am	
Paper #: 0003Title: Propagation of Harmonic Elastic Waves in Layered PhAbstract: The paper investigates the time-harmonic propacomposites with strip-like damages. At first band-gaps fokinds of damages are considered: single crack, periodic arfield in the damaged structure is written as a sum of theand the scattered wave field represented as a Fourier integGreen's matrix of the multi-layered structure. The effect.investigated. The paper focuses on resonance motion and lAuthor: S. GonellaAffiliation: University of MinnesotaPaper #: 0101Title: Spectro-Spatial Features as Detectors and Classifiers ofAbstract: Wave propagation in monoatomic chains withspectral phononic characteristics. An inverse problem to dthe spectro-spatial features of wave propaga-tion. Theperiodic system consisting of monoatomic spheres in codemonstrate the applicability of this inverse problem.Author: A. AdibiAffiliation: Georgia Institute of Technology	ononic Crystals and Wave Diffraction by Damages gation of 2D plane waves in periodically multi-layered elastic r non-damaged phononic crystals are analyzed. Then three ray of cracks and distributed delaminations. The total wave incident wave field described by the transfer matrix method gral convolution of the crack-opening-displacements and the s of the incidence angle, crack location and crack size are ocalization phenomena in a stack of elastic layers weakened Category: Invited Oral Time: 11:00 am -11:20 am of Nonlinearity in Periodic Chains quadratic nonlinearity is analyzed to determine spatial and etermine the nonlinear coefficient is then obtained by using application of this inverse problem is demonstrated for a ntact. Experimental characterization is also considered to Category: Invited Oral Time: 11:20 am -11:40 am	

metallic pillars on a thin substrate and compare it with hole-based PnCs. We will further show the use of the unique properties of these PnC structures for the formation of fundamental devices like single-mode waveguides and resonators and their use in forming more functional PnC structures.

	Author: V. J. Sánchez-Morcillo	Category: Invited Oral
ĺ	Affiliation: Universitat Politècnica de València	
	Paper #: 0111	Time: 11:40 am -12:00 pm
ľ		

Title: Enhancement of Sound in Chirped Sonic Crystals

Abstract: We report and experimentally demonstrate a mechanism of sound wave concentration based on soft reflections in chirped sonic crystals. The reported controlled field enhancement occurs at around particular (bright) planes in the crystal, and is related to a progressive slowing down of the sound wave as it propagates along the material. At these bright planes, a substantial concentration of the energy was obtained for a linear chirp profile and for frequencies around the first band gap.

Author: M. Ouisse	Category: Invited Oral
Affiliation: FEMTO-ST Institute	
Paper #: 0115	Time: 12:00 pm -12:20 pm

Title: Adaptive Metacomposites: Design Strategy and Experi-mental Validation

Abstract: Recent advances in modeling of multiphysics periodic systems allow designers to investigate new concepts for vibroacoustic absorption. In this work, we present a strategy to design adaptive metacomposites, namely host structures with periodic piezoelectric patches shunted with semi-passive electric circuits, together with experimental implementation.

Author: J. M. Cooper	Category: Invited Oral
Affiliation: University of Glasgow	
Paper #: 0108	Time: 12:20 pm -12:40 pm

Title: PhonoFluidics Phononic Tool-box for Microfluidic Circuits

Abstract: We present the design, fabrication and experimental validation of 2D phononic crystal lattices to control the propagation of acoustic energy within a plate, and its interaction with liquids on a microfluidic system. Controlled by the actuation frequency, this enables us to build a tool-box of fluidic functions for integrated molecular diagnostics.

Author: P. A. Deymier	Category: Org. Colloquium
Affiliation: University of Arizona	
Paper #: 0130	Time: 12:40 pm -1:00 pm

Title: Non-linear Waves in Phononic Structures

Abstract: We examine the propagation of elastic waves in non-linear one-dimensional phononic structures. Multipletime scale perturbation theory and Molecular Dynamics (MD) simulations combined with Spectral Energy Density (SED) calculations are used to study the effect of non-linearity on the band structure of the phononic structures. We pay particular attention to frequency shift and line width of the modes. These are discussed in terms of multi-phonon scattering processes. Two mass-spring systems are studied and contrasted. The first one is a one-dimensional chain of point masses and non-linear springs with cubic non-linearity. The second system is composed of linear springs connecting spatially extended masses. In addition to translation degrees of freedom, this later systems includes

Lunch Break (Kahramana Resturant)	1:00 pm - 3:30 pm	
Track 5: Periodic Structures		
Session: 19 (Amaraua Conference Hall)	3:30 pm - 6:30 pm	
Session Chair: A. Baz		
Author: H. Khales	Category: Contributed Oral	
Affiliation: Centre de Développement des Technologies Avancées		
Paper #: 0083	Time: 3:30 pm -3:45 pm	
Title: Evidence of Complete Elastic Band Gap in Phononic Strip Waveguides		

Abstract: We present theoretical work about the parametric effect of phononic strip made with inclusions on band gap formation. The influence of materials contrast and the geometrical forms on 1D phononic crystal is investigated. The geometric dimensions of the PC strip are in the same order of the system periodicity. We focus on the materials commonly used in micro-fabrication as W, Ni, Cu, and Al as inclusions material deposited on silicon substrate material.

	Author: C. C. Claeys	Category: Contributed Oral
Affiliation: Katholieke Universiteit Leuven		
	Paper #: 0032	Time: 3:45 pm -4:00 pm

Title: Honeycomb Core with Local Resonance Stopband Behaviour

Abstract: Liu et al. demonstrated that inclusions of high density spheres with a rubber coating in a matrix material result in low frequency stop bands1. These locally resonant sonic materials require a high density of local resonators throughout the matrix material, either spread ran-domly or periodically. In this paper, resonating structures are introduced into the cavities of a honeycomb core, leading to a honeycomb structure with local resonant stop band behaviour. This opens up possibilities to create materials with excellent mechanical properties and strong structural attenuation in a low-frequency region.

Author: M. Y. Wang	Category: Contributed Oral
Affiliation: The Chinese University of Hong Kong	
Paper #: 0005	Time: 4:00 pm -4:15 pm

Title: Wide-Band Low Frequency Gaps in Periodic Flexural Beams With Nonlinear Local Resonators

Abstract: In this work we study flexural wave propagation in a periodic beam with nonlinear local resonators suspended along the span of the beam. We focus on the frequency band structure of flexural wave propagation, especially the effects of a hardening stiffness of the resonators. We use the harmonic balance method with the transfer matrix method and Bloch's theorem to analyze the frequency band structure. Our results show that strong nonlinearity gives rise to a super-wide band-gap starting at a low frequency edge and extending to the first Bragg frequency with band-gap characteristics similar to Bragg scattering type.

Author: F. Romeo	Category: Contributed Oral
Affiliation: Sapienza University of Rome	
Paper #: 0096	Time: 4:15 pm -4:30 pm

Title: Localized Solutions against Wave Propagation Regions in Nonlinear Oscillatory Chains

Abstract: The nonlinear propagation regions of a chain of linearly coupled mechanical oscillators characterized by on site cubic nonlinearity are used to identify the re-gions of existence of localized solutions and to guide their analysis. Through a nonlinear map approach, the role played in the localization context by the propagation regions internal thresholds, governing temporary loss of stability, is also investigated.

Author: A. Leonard	Category: Contributed Oral
Affiliation: California Institute of Technology	
Paper #: 0068	Time: 4:30 pm -4:45 pm

Title: Nonlinear Pulse Propagation through Ordered Granular Networks

Abstract: We present a study of the nonlinear pulse splitting, bending, and combining through ordered 2D and 3D granular networks. Experimental results are in good agreement with both numerical simulations and theoretical predictions in terms of the distribution of leading pulse amplitudes reaching branch ends for variable network sizes.

Author: M. Ke	Category: Contributed Oral
Affiliation: Wuhan University	
Paper #: 0011	Time: 4:45 pm -5:00 pm

Title: Asymmetric Transmission of Acoustic Waves by Grating Structures

Abstract: We demonstrated the asymmetric transmission of acoustic waves by an asymmetric steel grating structure. This physical essence of this phenomenon comes from the one-way dif-fraction effect determined by the different periods on the both surfaces of the structure. The asymmetric transmission has potential applications in ultrasonic devices.

Author: R. Picó	Category: Contributed Oral
Affiliation: Universitat Politécnica de València	
Paper #: 0102	Time: 5:00 pm -5:15 pm
Title: Axisymmetric Toroidal System for Beam Focalization	

Abstract: Experimental evidences of focusing of acoustic waves with axisymmetric systems made of concentric toroidal rigid scatterers are reported in this work. The system behaves in the long wavelength regime as a refractive lens. Several other effects as beam forming, spatial filtering and frequency filtering are observed and discussed in this work. Due to the scalability of the problem, the design proposed in this work can be used in the range of ultrasound waves for medical and industrial applications.

Author: H. Zhang	Category: Contributed Oral	
Affiliation: National University of Defense Technology		
Paper #: 0074	Time: 5:15 pm -5:30 pm	
Title: Band Gaps Control of Phononic Beam with Hybrid Shunt-ing Circuits		

Abstract: Periodic arrays of hybrid-shunted piezoelectric patches are used to control the band gaps of phononic beam. In this article, active NC shunting circuits and passive resonant RL shunting circuits are connected to the same piezoelectric patch in parallel to control the location and the extent of the band gaps. A wider band gap will be achieved when the RL shunting band gap and the NC shunting band gap coupled with each other.

Adjourn	5:30 PM