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Elastic waves in a three-dimensional hexagonal
close-packed granular crystal: observation of rotational

modes and nonlinear effects
A. Merkel1, V. Tournat1∗, V. Gusev2
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Abstract: Noncohesive granular phononic crystals show peculiar features related to
the elastic nonlinearities at the contacts and the rotational degrees of freedom of the
grains. Evidence of rotational mode propagation and non reciprocity for nonlinear
acoustic effects is found in a hexagonal close-packed crystal layer with a gravity-
induced elasticity gradient.

Noncohesive granular crystals are periodic arrangements of elastic spheres with
noncohesive contacts 1,2. Due to the intrinsic elastic nonlinearity of the interaction
between the beads, these media are found to exhibit an overall high nonlinearity3.
Moreover, the fact that the grains are spherical and weakly frustrated for rotation due
to the non cohesive character of the arrangement, provides appropriate conditions for
the observation of rotational modes of propagation and coupled rotational-transverse
modes2,4,5.

Figure 1: (left) Schematics of the experimental setup. (center) Normalized dispersion
curves in the z direction. (right) Reference and transmitted amplitude through the granular
layer for shear and longitudinal detection.

The theory developed in Ref. 2, taking into account friction and the rotational degrees
of freedom, shows that there should exist in the z direction, longitudinal modes (LA
and LO), transverse-rotational modes (TR1 and TR2), rotational-transverse (RT1 and
RT2) and pure rotational modes (R1 and R2), see Fig. 1 (center). When shear and
longitudinal waves are excited from one side of the granular crystal layer, a pass-
band up to fL (predicted here for an applied static force of 780 N ) is observed for
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Figure 2: (left) Spectrogram of a wide-frequency-band pulse transmitted through the
layer. (right) Demodulated wave amplitude for bottom-to-top and top-to-bottom paths of
propagation.

longitudinal waves (detection with the longitudinal transducer, Fig. 1 (right)). With shear
detection, a pass-band up to fRT (cut-off frequency for rotational-transverse modes) is
observed, showing that the higher frequency modes associated to rotation of the beads
propagate. Complementary experimental results will be discussed, such as the static
pressure dependence of the cut-off frequencies.

In Fig. 2 (left), the theoretical group delays for the detectable modes (L, TR,
RT , shown as lines) are compared to the energy front arrival time of the transmitted
energy and are in qualitative agreement for both longitudinal and rotational-transverse
modes, confirming the role of the rotational degree of freedom. Non reciprocity for
nonlinear effects is finally reported in Fig. 2 (right). Wave packets are generated by a
transducer and then are nonlinearly self-demodulated in the medium6. This frequency-
down conversion does not exhibit the same efficiency for propagative or evanescent
pump waves and is direction dependent. This phenomenon is explained by the existence
of a vertical gradient of medium properties, induced by gravity, both for the wave
attenuation and the nonlinearity of the medium. We believe that our experiments provide
the first experimental evidence of the dependence of nonlinear acoustic phenomena on
propagation direction in spatially inhomogeneous granular media.
This work is supported by ANR grant STABINGRAM.
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Out-of-plane acoustic modes in monolayer phononic
granular membranes

I. Perez-Arjona1, A. Merkel2, V. Tournat2∗, V. Gusev3, V. Sanchez-Morcillo1
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Abstract: Waves in hexagonal monolayer granular membranes are studied theoret-
ically. The predicted propagation modes involve an out-of-plane displacement and
two rotations with axes in the membrane plane. Shear and bending rigidities at the
contact are considered, as well as coupling with a substrate. Dispersion relations and
band gaps are presented and discussed for various contact properties.

Recently, ordered monolayer nanoparticle arrays have been successfully produced by
self-assemblage during a drying process1, and can be stretched across micrometer size
holes to provide freely suspended monolayer membranes2,3. Such granular membranes,
with peculiar elastic and optical properties could lead to a wide range of sensor applica-
tions. Here, we report a theoretical work on the vibrational properties of such granular
membranes. The specificities of these granular systems compared to classical membranes
come from the particle finite dimensions and their finite rotational inertia (rotational de-
gree of freedom) which lead to elastic interactions through non-central forces. In par-
ticular, it provides in addition to shear and longitudinal acoustic modes, the existence of
rotational (or so-called micro-rotational) modes4−6.
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Figure 1: a) Geometrical arrangement of the beads in the elementary cell of the hexagonal
membrane crystal and definition of the Brillouin zone and coordinate axes. b) Iso-surface
plots of the lowest eigenvalue Ω = ω2/(4ξ/m) of the dynamical matrix (left), the middle
eigenvalue (center) and the largest eigenvalue (right) (α = kx/4 and β =

√
3ky/4). c)

Dispersion relations and associated symmetries of the modes.

In order to model out-of-plane mode propagation in monolayer granular membranes,
the equations of motion for the displacement u0 of the center of the central particle 0, and
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the equations for the rotations ϕ0 and ψ0 (defined in Fig. 1(a)) are written in the form

mü0 = −ξ [(δu1 + δu4) + (δu3 + δu6) + (δu2 + δu5)] , (1)

Iϕ̈0 =

√
3

2
ξR [(δu1 − δu4)− (δu3 − δu6)] , (2)

Iψ̈0 =
R

2
ξ [(δu1 − δu4) + (δu3 − δu6)] +Rξ [δu2 − δu5] , (3)

where m is the mass of the particle, ξ is the contact shear rigidity and, for the particular
case of homogeneous spheres, the momentum of inertia is I = 2

5
mR2. The terms δui

denote elongations of the spring at the contact between the central and i−particle, that is,
the relative displacement between 0 and i−particle at the contact point.

After plane wave substitution, the dynamic matrix is obtained whose eigenvalues
provide the dispersion relations plotted in Fig. 1(c) in the case where only shear rigidity
between spheres is taken into account. Pure rotational modes are predicted in both x and
y propagation directions, as well as a zero frequency mode along the path OM.

Fig. 2 shows an example of the modified dispersion relations when bending rigidity
at the contacts is introduced.
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Figure 2: Dispersion relations obtained
when shear and bending rigidities at the
contacts are taken into account. Here a
bending rigidity of 0.7 times the shear rigid-
ity is used. An absolute band gap appears
starting from a bending to shear rigidity ra-
tio of 8/15. The zero frequency mode of
Fig. 1 when bending is neglected is not pre-
dicted anymore.

Furthermore, the influence of the interaction with a rigid substrate has been taken into
account. It is expected that these results will be useful for describing the phonon transport
in two-dimensional nano-crystals, and vibration properties of micrometer scale granular
membranes potentially used as sensors in the near future.
This work is supported by ANR grant STABINGRAM.
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2D Wave Propagation in Periodically Layered Composite 
Structures with Damages 
Mikhail V. Golub1 , Chuanzeng Zhang2 
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Abstract: Plane SH-wave propagation in periodically layered elastic composites with a single 
strip-like crack and an array of cracks (periodic or stochastic) is investigated using the transfer 
matrix method and the boundary integral equation method. The focus of this analysis is on the 
wave transmission and reflection, band gaps, localization and resonance phenomena due to 
crack-like damages. 

Wave propagation in periodic composite structures is usually accompanied by localization phenomena 
and band-gaps, which are observed in photonic and phononic crystals1. Elastic waveguides are sus-
ceptible to damages like cracks during the manufacturing or in service. In particular, the delamination 
at imperfect interfaces between the constituents, interior cracks in the individual layers can occur. 
Such interface or interior damages could change the dynamic properties of the periodic composites 
and correspondingly cause noticeable alterations in band gaps and wave transmission spectra etc. To 
simplify the analysis, imperfect interfaces are usually simulated by a periodic/stochastic distribution 
of interface cracks or by spring boundary conditions2,3, where the latter in a limiting case corresponds 
to a crack. Several analytical and numerical approaches have been developed so far for wave propaga-
tion analysis in periodic structures4 including the transfer matrix method employed in the present 

work. Wave propagation 
and diffraction by a crack in 
multilayered composite 
structures can be efficiently 
investigated by using 
integral representations and 
Green's functions in con-
junction with the integral-
transform technique5.  

In this paper, we consider 
time-harmonic plane wave 
propagation with circular 
frequency  in a layered 

waveguide composed of two half-planes with a set of N elastic layers and one damaged layer in the 
stack. The Cartesian coordinate system x=(x,z) associated with the damaged zone is introduced: the 
Ox axis and the damaged interface are assumed to be parallel to the interfaces between the layers. The 
i-th layer occupying the domain |x|<∞, ai-1<z<ai of the thickness di=ai-ai-1 has the shear modulus µi 
and the mass density ρi. The damage is situated in the M-th layer at a distance d from the interface 
z=aM-1. The following three damage types are considered here: a single strip-like crack of length 2l, a 
periodic array of cracks of length 2l with a crack-distance s, and distributed damages modeled by 
spring boundary conditions3 (see Figure 1). The problem for a single crack and for an array of cracks 
is solved by using a boundary integral equation method for the unknown crack-opening-displacement 
(COD), while the application of the spring boundary conditions allows us to use the T-matrix method 
with an approximate estimation of the spring stiffness3. 

Numerical examples will be presented to show the resonant and non-resonant regimes of the wave 
motion in the periodically layered composites weakened by a single strip-like crack or a periodic array 
of cracks and wave localization in the vicinity of the damages. Wave motion with large amplitudes for 

Figure 1 Geometry of the problem and mathematical model of a multi-layered compos-
ite between two identical half-planes with a damaged zone (a single crack, a periodic 
array of cracks, and a spring model). 
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some parameter combinations is found through the analysis of the COD, and it is shown that such re-
sonant regimes are quite different within band gaps and pass bands. Dynamic stress intensity factors 
(SIFs), average energy density flow, energy transmission coefficient κ+ and average COD normalized 
by the amplitude of the incident wave field vu are also investigated to gain a better understanding of 
the wave propagation processes. If cracks are present in the layered composites, then the local max-
ima and minima of the COD and the SIFs are related to the maxima of the energy amount transferred 
through the layered composites, to be more precise, the extremal values of these quantities occur at 
the same frequencies in the pass bands. On the other hand, the amplitude of the wave motion at fre-
quencies within the band gaps decreases rapidly in the direction of wave propagation, whereas the 
presence of cracks may cause noticeably larger amplitudes of the wave motion in their vicinity, i.e., 

wave localization. Stress and displace-
ment fields of largest amplitudes are ob-
served at resonance frequencies. 

Without loss of generality we assume 32 
layers in a waveguide and a unit-cell 
composed of 2 layers (Plumbum/Epoxy), 
and the damaged layer is in the middle of 
the stack of layers M=15. A single crack 
does not influence the band gaps due to 
the attenuation of the scattered wave field, 
while it changes, of course, wave pattern 
in the vicinity of the crack. Within the 
pass bands two kinds of resonances with 
intensified wave motion in the vicinity of 
the crack are observed. 

An illustration example is given in Figure 
2, where the transmission coefficient 
κ+(,l) and the normalized average of 
COD vu(,l) for a normally incident SH-
wave are presented. Obviously, the pres-
ence of a damaged zone can only extend 
the band gaps, while for a periodic array 
of cracks two types of resonances are also 
observed. A “weak” resonance is ob-
served in the pass bands, and it corres-
ponds to relatively high amplitudes. A 
“strong” resonance is noted within the 
bang gaps, which is characterized by dark 
zones in Figs. 2(b) and 2(d). The “strong” 
resonances are induced by the localization 
of the wave motion near the damages. 

The work is supported by the Ministry of Education and Science of Russian Federation, the German 
Research Foundation (DFG, Project No. ZH 15/11-1) and the German Academic Exchange Service 
DAAD, which are gratefully acknowledged. 
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Figure 2 The transmission coefficient κ+(,l) (a,c) and the normalized 
average COD vu(,l) (b,d) for a periodic array of cracks with s=3 and 
situated in the middle of the 15-th layer(a,b) and at the interface be-
tween the 15-th and 16-th layer (c,d). Band gaps are marked. 
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Tailoring Stress Waves in 2-D Highly Nonlinear Granular 
Crystals: Simulations and Experiments 

Andrea Leonard1, Amnaya Awasthi2, Philippe Geubelle2, Chiara Daraio1 
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Abstract: We study the propagation of elastic stress waves in two-dimensional highly nonlin-
ear granular crystals composed of square packings of spheres with and without cylindrical in-
truders, via experiments and numerical simulations. By varying the intruder material, we show 
the ability to alter the propagating wave front characteristics. Experiments agree well with dis-
crete particle simulations. 

Granular crystals are materials composed of ordered arrangements of particles in contact with each 
other, characterized by a highly nonlinear dynamic response. The transient dynamic response of one- 
dimensional highly nonlinear (uncompressed) granular crystals has been studied extensively1,2, how-
ever few reports have explored wave propagation in two-dimensional systems3. The present work in-
vestigates the propagation of stress waves, or acoustic waves, in highly nonlinear two-dimensional 
granular crystals composed of a squared array of steel spheres and interstitial cylindrical intruders 
(Figure 1). Specifically, we analyze the influence of underlying particle composition on the wave 
front shape. We report that it is possible to substantially alter the shape of the wave front traveling 
through the system after impulsive loading by methodically varying the intruder material. These find-
ings could lead to the development of new shock protecting materials and acoustic filters. 

Numerical simulations were performed using a discrete particle 
model, in which each sphere or cylinder is modeled as a point mass 
connected by nonlinear springs. Hertzian potential4 is used to model 
the sphere-sphere and sphere-wall interactions and a similar poten-
tial5 is used to model the sphere-cylinder force displacement rela-
tion. Dissipative terms, such as friction, were not included in the 
simulations. Material properties chosen for the simulations are given 
in Table 1. 

Experiments were performed on self-standing crystals assembled 
within a confining box made of delrin-lined walls (Figure 1). The 
array of particles included a 20 by 20 array of large steel spheres 

(19.05 mm diameter) with small interstitial intruders (7.89 mm diameter and 19.05 mm height). A 
striker-sphere identical to the particles composing the array was used to generate stress waves be-
tween two central particles in the array. The striker velocity was recorded with an optical velocimeter 
just before impact, and the recorded value was used as input in the numerical simulations. Several 
custom-fabricated sensor particles, instrumented with calibrated miniature tri-axial accelerometers, 
were positioned in selected locations in the array. The recorded accelerations were then compared 
with the acceleration of the center of mass of each particle obtained from the numerical simulations.  

Experiments were performed on the 
square packing of spheres with and 
without the presence of the cylindri-
cal intruders, and were shown to be 
in good agreement with the numeri-
cal simulations (see Figure 2, com-
paring experimental and simulation 
results for an array without intrud-

Material 
Mass density 

(kg/m3) 
Young’s Modu-

lus (GPa) 
Poisson’s 

Ratio  

Stainless Steel (type 316) 8000 193 0.30 

Aluminium 2740 69 0.33 

Teflon (PTFE) 1200 0.5 0.46 

 
Figure 1 Schematic diagram of the 
experimental setup.  

Table 1 Material properties used in numerical simulations.  

Phononics 2011: First International Conference on Phononic Crystals, Metamaterials and Optomechanics
Santa Fe, New Mexico, USA, May 29-June 2, 2011

PHONONICS-2011-0030

1



149

Phononics 2011 	 Track 3: Periodic Structures
 

Phononics	
  2011:	
  First	
  International	
  Conference	
  on	
  Phononic	
  Crystals,	
  Metamaterials	
  and	
  Optomechanics	
  

Sharm	
  El-­‐Sheikh,	
  Egypt,	
  May	
  29-­‐June	
  2,	
  2010	
  

PHONONICS-­‐2011-­‐XXXXX	
  

 

2 

 

ers). In the absence of cylindrical intruders, the crystal was shown to support the propagation of soli-
tary waves with comparable properties to the solitary waves previously observed in one-dimensional 
systems1,2. 

Numerical simulations showed the ability to significantly alter the stress wave front by introducing 
indruder particles of variable materials. A crystal composed of a squared array of particles without 
intruders supports the formation and propagation of highly nonlinear solitary waves along the two 
central chains (in line with the impact direction) and along the side of the crystal (following a quasi 
one-dimensional behavior, see Figure 3a). However, when cylindrical intruders were included the 
shape of the wavefront was observed to vary. When Teflon cylinders were used as intruders (Figure 
3b) the wave front remained highly directional, similar to the case where intruders are absent, but the 

initial pulse begins to spread and 
shed energy in trailing pulses. 
The use of aluminium intruders 
allowed spreading of the 
wavefront into a triangular 
pattern (Figure 3c). Finally, when 
stainless steel intruders were 
used, we observed a nearly 
circular wavefront (Figure 3d) 
with particle velocities distributed 
over a larger area of the crystal. 
The ability to control the stress 
wave properties in these granular 
cystals may allow for the 
development of new wave-
tailoring materials which could be 
used, for example, as protective 
layers capable of redirecting and 
trapping impact energy. 

This work was supported by the 
DOE SCGF and the Army Re-
search Office MURI (Dr. David 
Stepp). 
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Figure 2 The left figure shows locations of sensor particles in the experimental setup (Vo = 0.29 m/s). The right figure  
compares experimental results (top right) with the simulation results (bottom right) for each of the sensor locations. 

(a)              (b) 

 
(c)              (d) 

 

Figure 3 Numerical results showing the wave front shape in terms of particle 
velocity magnitude at simulation time 0.35 ms after the striker impact (Vo = 0.6 
m/s) for test configurations composed of steel spheres in a square packing with 
(a) no intruders (b) PTFE intruders (c) aluminium intruders and (d) steel intrud-
ers. 

Phononics 2011: First International Conference on Phononic Crystals, Metamaterials and Optomechanics
Santa Fe, New Mexico, USA, May 29-June 2, 2011

PHONONICS-2011-0030

2



150

Track 3: Periodic Structures	 Phononics 2011

Phononics 2011: First International Conference on Phononic Crystals, Metamaterials and Optomechanics 

Sharm El-Sheikh, Egypt, May 29-June 2, 2010 

PHONONICS-2011-XXXXX 

1

Active Control of Band Gaps by Periodically Distributed 
Piezo-shunts
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Abstract: Periodic arrays of inductive or negative capacitive shunted piezoelectric patches are 
employed to control the band gaps of phononic beams. An epoxy beam with periodically sur-
face-bonded piezoelectric patches is designed. The band gaps, when each piezo-patch is con-
nected to a single inductive or negative capacitive circuit, are investigated in detail. 

In the last decades, extensive efforts have been exerted to analyse the propagation of elastic or acous-
tic waves in periodic composite materials called phononic crystals1-3. A lot of work is particularly fo-
cused on the characteristics of so-called phononic band gaps, in which elastic wave propagation is 
completely blocked. These are referred to as stop bands or band gaps. The development of smart ma-
terials used to design intelligent phononic crystals whose spectral width and band gap location can be 
actively tuned has received considerable attention4-10.

Periodic arrays of 
inductive or nega-
tive capacitive 
shunted piezoelec-
tric patches are em-
ployed to control 
the band gaps of 
phononic beams. 
An epoxy beam 
with periodically 
surface-bonded pie-
zoelectric patches is 
designed, as shown 
in Figure 1. Each 
piezoelectric patch 
is connected to a 
single, independent 
inductive or nega-
tive capacitive cir-
cuit.

The location and the 
extent of induced band gaps depend on the mismatch in impedance genera-ted by each patch. The 
total impedance mismatch is deter-mined by the added mass and stiffness of each patch as well as the 
shunting electrical impedance. Therefore, the band gaps of the shunted phononic beam can be actively 
tuned by properly selecting the parameters of shunting circuits.  

The shunting inductance combining with the intrinsic capacitance of piezoelectric patch constitutes an 
oscillator, which interacts with the matrix beam through electromechanical coupling effect. In analogy 
to locally resonant structures with mechanical vibrators, the beam with periodic inductive-shunts can 
form a locally resonant gap in it as well, which is closely related to the eigenfrequency of the resonant 
shunts. The eigenfrequency of the inductive shunting circuit can be expressed as 

1
2 p

f
LCπ

= (1)

A A AB B B
n-1 n n+1

PZT

Z Z Z

z

x
o

cross-section

y

z

-C L

(a)

(b) (c) 

Figure 1 Phononic beam with negative capacitive or inductive piezo-shunts; (a) Schematic dia-
gram of the configuration; (b) Negative capacitive shunting circuit. (c) Inductive shunting circuit. 
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where Cp is the inherent capacitance of piezoelectric patches. However, the locally resonant gap 
induced by inductive shunts is not completely identical with the conventional locally resonant gap 
induced by mechanical vibrators in that the eigenfrequency of former type is out of the band gap, 
while the latter is in.

Different from the inductive shunts, the negative capacitive shunts are used to tune the Bragg gaps of 
the beam, because there is no local resonance in the shunting circuits. Nevertheless, the negative 
capacitive shunts can effectively increase the electromechanical coupling factor of the piezo-patches 
and modify the equivalent modulus of the elements bonded with piezo-patches in the beam, which can 
be given by 

( )
( )p 2

11 31

p p

E
p p s

h C C
E

h s C C d A

−
=

− −
(2)

where 11
Es  is the piezoelectric material’s compliance coefficient at constant electric field intensity.  d31

is the piezoelectric constant that couples the mechanical and electrical properties of the piezoelectric 
material. As is the area of electrodes. hp is the thickness of piezoelectric patch. Contrary to 
inductive shunts which are passive circuits, the negative capacitive shunts are active circuits that have 
external energy input, so the proposed approach will be afflicted by instability problems11,12. To avert 
the system being destabilized by negative capacitive shunts, the stable conditions of the shunting 
system are investigated in detail.  

Control of the band gaps of phononic beam with piezo-shunts is demonstrated numerically, 
employing transfer matrix method with periodic boundary conditions and the Bolch theorem. The 
variations of band gaps with different shunting parameters are discussed in the paper, subsequently. 
The result reveals that inductive shunts can induce local resonances in the beam and form locally 
resonant gaps around the eigenfrequency, but negative capacitive shunts can tune the Bragg gaps 
readily and effectively. The theoretical results are verified with commercial finite element software by 
calculating transmission properties of finite periods. Because negative capacitive shunted phononic 
beam are a non-conservative system with external energy input, the stability conditions are 
investigated in this paper. The result reveals that the stability can be judged readily by the value of 
equivalent modulus of the elements bonded with piezo-patches. Though negative modulus will occur 
in both inductive and negative capacitive shunting systems, the inductive shunting system is a 
conservative system which is stable, because its negative modulus is a dynamic value and frequency 
dependent, while the negative capacitive shunting system will become unstable, if the equivalent 
modulus becomes negative, which is a static value and frequency independent. 
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The Role of Array Symmetry in the Transmission of 

Ultrasound through Periodically Perforated Plates
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Abstract: We present angle-resolved experimental results on the role of array symmetry in 
the  transmission  features  of  periodically  perforated  plates.  A very  rich  interplay  between 

Fabry-Perot  single-hole  resonances,  coherent  scattering  and  plate  vibration  is  found.  By 

comparing several  spatial  hole arrangements,  the effects  of  the  geometry are  disentangled 

from the contribution of plate vibrations.  

The study of periodic structures interacting with sound can be tracked back to the end of the 19th 

century  with the  work  of  Rayleigh1,  who studied  the  reflection coefficient  of  a  one dimensional 

grating. Later, in 1953, Brillouin2 attempted a unification of the concepts involved in the behavior of 

electromagnetic  and  mechanical  waves  in  periodic  media.  More  recently,  the  propagation  of 

electromagnetic  waves  through  metallic  membranes  perforated  with  subwavelength  periodic  hole 

arrays  has  received  considerable  attention.  Experiments3 have  showed  that  at  certain  frequencies 

strongly correlated with the array period, light transmission per hole is higher than predicted for non-

interacting holes theory4. These ideas, originally developed in the context of electromagnetic waves, 

have been transferred  to  acoustic  waves5-8 and  this  phenomenon is  now known as  Extraordinary 

Acoustic Transmission (EAT), although it has been recently demonstrated9 that for the acoustic case 

there  is  not  as  extraordinary as  in  optics.  Fabry-Perot  resonances  in  the holes  produce  the  main 

contribution to the full transmission peaks. 

Our experimental  setup is  based on the well-known ultrasonic immersion technique.  The plate is 

placed  between the  ultrasonic  transducers  (around 250 kHz)  in  a  water  tank.   Measurements  of  

transient signal are averaged over 100 runs. The plate is then rotated to obtain the dependence on the  

parallel-to-the-plate  wave-vector  (see  Fig.  1).  The  transmission  spectrum is  normalized  with  the 

spectrum measured without the plate. The plate thickness is 2 mm and more than 1500 holes of 3 mm 

in  diameter  were  drilled  in  aluminum  and  brass 

plates  having  different  array  geometries  such  as 

square, rectangular,  triangular,  and pseudo random. 

Transmission  dispersion  for  these  different  array 

arrangements are shown in  Fig. 2. The sound line 

does not correspond to the line where the data ends 

because  our  experimental  setup  cannot  be  used  to 

measure  plate  rotation  angles  above  60º.  In 

agreement  with  previous  results8,10  ,  a  very  rich 

interplay  between  hole  resonances,  coherent 

interference, and plate modes is observed in Fig. 2 

(a),  (b),  and  (d).  However,  when  the  translational 

symmetry  is  broken  by  drilling  the  holes  in  a 

pseudo-random manner (Fig. 2(c)), the transmission 

dispersion  becomes  smoother.  This  allow  us  to 

identify  the  contribution  of  the  perforated  plate 

vibration,  which  can  be  seen  as  a  minimum 

corresponding to a leaky surface mode.

1

Figure 1   Scheme of the geometry for the transmission 

of  ultrasound  through  perforated  plates.  An  incident 

wave  having  wave-vector  k0  arrives  at  the  plate  of 

thickness t, which is perforated with holes of diameter d 

and period a. The parallel to the plate component of the 

incident wave-vector  k||  is  varied by rotating the plate 

with respect to the source.
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Additionally,  full  transmission  is  quenched  to  1/2  in  the  absence  of  coherent  interference. 

Translational symmetry is also the key factor for the appearance of the observed dips which vary 

depending on the geometry. These minima arise from the hybridization of Wood anomalies11 (i.e. 

lattice  modes) with plate modes.  Pure Wood anomaly minima can be observed if  the impedance 

mismatch between the holey plate and the surrounding fluid is large enough to assume that the plate is 

perfectly rigid and the sound cannot penetrate it. The crossing between the Wood anomaly and the 

surface  mode  can  be  clearly  seen  for  the  three  symmetric  arrays.  This  crossing  is  particularly 

interesting because it involves the surface mode, the Wood anomaly minimum, and the transmission 

peak, all of them hybridized. Thus, the array symmetry plays a key role in the transmission features of  

perforated  plates.  The  existence  of   full  transmission  peaks  and  Wood  anomaly  minima,  both 

depending  on  coherent  interference  among  holes,  can  be  only  guaranteed  by  the  translational  

symmetry of the array. 
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2

Figure 2   Transmitted sound power measured at ultrasonic frequencies  for  perforated plates of thickness  t=2 mm 

immersed in water and different array geometries. The insets show the reciprocal space of the hole arrays and their 

corresponding orientation relative to the first Brillouin zone. (a) Square array of period a=5 mm drilled in an Al plate. 

(b) Triangular array of period a=5 mm drilled in an Al plate.  (c) Pseudo-random array having an average period a=5 

mm, also drilled in an Al plate. (d) Rectangular array of periods ax=4 mm, ay=6 mm drilled in a brass plate.
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Phonons on Complex Networks 
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Abstract: We map the nodes and edges of complex network to oscillators and couplings 
between them. We thus can study the multi-scale structures of networks through the properties 
of eigenmodes of laplacian matrix – the phonons on complex networks. The phonons from low 
to high frequencies are used as probes of the structural characteristics from macro- to micro- 
scales. This characteristic can be used as a structural measure of complex networks. These 
findings may have potential applications in real networks, such as heat conduction on 
nanotube/nanowire networks and biological networks. 

Introduction 

Vibrational dynamics has been widely used to study thermodynamic properties of various structures in 
solid-state physics and/or other disciplines. Since the structure is considered as a primary factor 
responsible for physical properties, reaching a reliable comparison of the structure patterns at different 
scales in a quantitative way is of primary importance for us to know the underlying structure how the 
dynamic transport processes of mass, energy, signal and/or information from micro- to macro- 
structural scales. The effect of network structures on electronic and thermal properties has been one of 
the most active topics in recent years1, 2.  

Methods 

In this paper, we map the nodes and the edges to oscillators and couplings between them. The 
vibration modes (phonons) are used as probes of the structural patterns. One phonon with a specific 
frequency is sensitive only to the structural patterns matching in size with its frequency. By using all 
the vibration phonons from low to high frequencies we can detect the pattern properties from macro- 
to micro- scales.  

The topological structure of a network can be described by an adjacency matrix A. The elements ijA  
are 1 and 0 if the nodes i and j are connected and disconnected, respectively. We map the nodes to 
oscillators and the edges to harmonic couplings between the connected nodes. Denoting the 
displacements of the oscillators with (y1,y2,…yN) the equations governing the dynamical process of the 

network reads,
 

 
1

,
N

i is s i
s

y k A y y


   N is the network size,   the mass of each oscillator and  k  

the coupling strength. For simplicity, let / 1k   .Assuming ,i tY Xe   

1 2 1 2[ , ,... ],  X [ , ,... ],T T
N NY y y y x x x  the equations can be rewritten as, , 2 GXX  G the 

coupling matrix, also named Laplacian Matrix, which reads,   
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     (1) 

The eigenvalues of G are nonnegative and can be ranked as,  .0 21 N     Assuming the 
network is in a thermal bath with a definite temperature, a simple computation leads to the cross-
correlations between the fluctuations of the phonons, 

    

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It follows that the contribution of an individual phonon is,
 

    .1
ij

T
mmmij XXmG   The phonons 

with small values of i  , the corresponding motions are collective and global, and can measure the 
characteristics of macro-scale patterns. The phonons with large values of ,i on the other hand, de-
scribe uncorrelated motions occurring in different micro-scale regions, which are sensitive to micro-
scale patterns. Hence, the phonons can detect the structural patterns from macro- to micro-scales.  

Results:  

Figure 1 demonstrates that a phonon with a specific frequency is sensitive only to the structural pat-
terns matching in size with its frequency. 

Figure 1 phonons on networks can be used as probes of structur-
al patterns at different scales. (a) A circular network is con-
structed by connecting each nodes with its nearest four neigh-
bors. The sizes is N=100. On this regular network, the phonons 
are periodic waves. The wavelength is measured in unite of the 
lattice size. (b) A densely connected deformation is constructed 
in the segment 40-60 by connecting each node in this region with 
its six nearest neighbors (instead of the originally four nearest 
neighbors). Phonons with comparatively large wavelenghths 
keep unchanged or  deform slightly, while phonons matching 
with the deformation(e.g., 100 ) become localized in the defor-
mation region 
 

We have applied the method to the Santa Fe Institute collaboration network3. We first normalize the 
components of the phonons, namely,  | / max( ) |,  1,2, , .s

i i iX X X i N    Then a threshold s  
can be used to identify the nodes involved in the phonons, respectively. The nodes with large values 
of component s

iX  ( s  ) are regarded as the nodes involved in the corresponding phonons. For each 
phonon, the components of the nodes involved in it are distinguishably large compared with that of 
the others. Hence, the s -based results are robustness. In the present work, we choose the .1.0s  
The detail results are shown in Fig 2 (details can be seen from Ref 4 ).  

Figure 2 A part of largest component of the Santa Fe Institute colla-
boration network. There are totally 76 nodes. The phonons 

747576,  and  can detect the three hubs 40, 7 and 67, marked 

with red color. The phonon. 73  involves nodes 17 ~ 25 (green 

nodes), while the phonon 72  covers the nodes 26 ~29 and 34 also 
(green and cyan). The three clusters 41 ~47 (blue), 1 ~ 6 (magenta), 
and 48 ~ 53 (violet), correspond to the phonons 6970,  and 68 , 
respectively.  

Conclusions 

To summarize, we have used the phonon to detect the structural patterns at different scales in model 
network and Santa Fe institute collaboration network. Because the phonons are sensitive only to the 
structural patterns matching in size with their wavelengths, the phonon from high to low frequencies 
can capture the pattern characteristics in a coarse-grain way.  
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  

 
 


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   
             
 
 

  
             
   
 

 
   
   


    
 


 
 
 

   


         

    


   
  



 
 
  
              


 
    
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EFIT Simulation of Ultrasonic Wave Propagation in 
Complex Microfluidic Structures 

M. Zubtsov1 , R. Grundman1, R. Lucklum1

1 Institute of Micro and Sensor Systems, Otto-von-Guericke-University, Magdeburg, Germany 
mikhail.zubtsov@ovgu.de, ralf.lucklum@ovgu.de

Abstract: The Elastodynamic Finite Integration Technique (EFIT) is used to simulate ultrasonic 
wave propagation in complex microfluidic structures comprising fluidic channels, phononic 
crystal structures and piezoelectric transducers. An EFIT computational math is combined with 
MATLAB coding. The viability of the approach is demonstrated. 

The precise spatial and temporal control afforded by microfluidic devices make them uniquely suited to 
solve many challenging problems in sample treatment and analysis at micro and nano scales. Dealing with 
the dynamics and engineering of fluids confined on the micrometer scale microfluidics involves the large 
number of different basic phenomena and a combination of a broad variety of effects and means including 
ultrasound, which has shown to be a viable technique for some microfluidic tasks like microparticles 
manipulation, stirring, mixing and streaming of microvolumes [1] as well as characterization. Phononic 
crystal devices may significantly expand the use of ultrasound in microfluidic systems, since they offer a 
wide range of functionalities [2, 3], which can be beneficially utilized to improve microfluidic system 
operation and enable new applications. 

However, in order to integrate this new class of acoustically active and reactive devices into existing 
liquid manipulation units, an analysis of the total acoustic field is required. There is an apparent need for a 
better understanding of interactions between ultrasonic waves and complex structures comprising both 
active and reactive components. We consider an EFIT, which relies on the direct discretization of the 
Newton-Cauchy’s equation of motion and the equation of deformation rate, and where all field quantities 
are function of position and time, as a proper math ground for an efficient simulation tools which can 
solve this problem. 

The EFIT starts with the elastodynamic governing equations in integral form and simulates the ultrasonic 
wave field without any approximations. Using unique discretization of the basic field equations on a 
staggered grid the method permits to implement a pertinent code for widely arbitrary inhomogeneous 
composites [4]. In general, the FIT also permits a unified treatment of the acoustic, electromagnetic, 
elastodynamic and piezoelectric cases [5]. In all these instances, the underlying governing equations in 
integral form are discretized on the same a dual grid complex in space and time, which yields the so-
called discrete grid equations. Another advantage of the FIT approach is that the resulting discrete matrix 
equations represent a consistent one-to-one translation of the underlying field equations. The use of 
discrete topological operators ensures important vector analytical properties in the discrete grid space.  

The FIT implicitly insures that the numerical results are free of late-time instabilities and artificial 
sources. On account of the complexity of multiple acoustically active and reactive units including PZT 
devices integrated into a single structure we consider this unified approach as the most appropriate to the 
problem, in particular, taking into account simplicity of the FIT, which allows an easy and efficient 
implementation on various computer architectures. 
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A regularly perforated wall between two parallel and adjacent fluidic channels has been used as the first 
test sample to evaluate applicability of the method. This model represents one of possible setups of 
phononic crystal sensor integrated into a microfluidic system. The EFIT-code and other relevant routines 
are implemented with MATLAB which provides a user interface and different output opportunities that 
help to analyze and visualize the simulation results. The possibility of parallel computing to afford bigger 
and/or more detailed models has also been realized. 

A good agreement between the first EFIT results and similar simulations using COMSOL Multiphysics™
and FTDT has been demonstrated. Basic simulations we have performed show all the kind of interactions 
between propagating wave and the structure, which are typical for an acoustic-structure interaction, 

including those which are not available in semi-analytic methods. Some are illustrated on the Fig.1. This 
presents a time-domain snapshot of a time-harmonic acoustic plane wave impinging on an infinite and 
regularly perforated quasi-1D plate. This particular setup, specifically, diffraction of emanating from the 
wall of fluidic channel plane wave and impinging on regularly perforated intermediate wall at the 
subwavelength regime, relates to one of possible sensing applications. Namely, we consider presented 
here effects of mode conversion as well as effects which are coupled with the resonant propagation 
through the plate as good candidates that may afford a distinctive measurand feature. 

Figure 1 Spatial distribution of T33 field in the diffraction of plane wave at subwavelength regime. Perforation periodicity a=1
mm, the wavelength λ=a, and the size of the perforation b=a/2. 
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Abstract: The physical properties of 2D finite periodic arrays are explored using acoustic 
beams with finite spatial width. Multiple Scattering Theory and the Plane Wave Expansion 
Method are used to study the differences between the approximation of infinite periodic me-
dium and the finite case. In the most experimental cases the physical properties of the system 
are constrained by both the size of the sample and the width of the acoustic beam. 

 
A Sonic Crystal is a periodic arrangement of cylindrical inclusions embedded in a homogeneous host 
material. The host material may be solid, the term Phononic Crystal is used in this case. For many 
applications usually these scatterers can be considered as infinitely rigid and the propagation inside 
them is not possible. Sonic Crystals can be designed in order to guide the acoustic energy in an appro-
priate way to present particular effects like focalization, auto-collimation or filtering.  
 
The propagation of acoustic waves in a 2D 
periodic media can be described from its dis-
persion relation and the iso-frequency con-
tours. Band gaps and propagation curves de-
scribe the propagation features for a specific 
direction in an infinite crystal. However, the 
sonic crystal is composed by a finite number 
of scatterers and thus, its finite size must be 
taken into account. The theoretical approach 
for a 2D finite period array is more compli-
cated. If the beam is wide enough to be com-
parable to the size of the crystal at the front 
interface, the edge effects may become im-
portant and they cannot be neglected. It is the 
same case at opposite case: extremely narrow 
beams (comparable to the period of the crys-
tal) do not propagate though the crystal as 
plane waves in a periodic medium. In the 
field acoustics, little attention has been paid to 
investigate how the finitude of the beam and 
the size of the sample may affect wave propa-
gation through and outside the crystal.  
 
Multiple Scattering Theory1 (MST) is used to solve the scattering problem of a finite width beam pro-
duced by the array of scatterers. A distribution of 5x5 infinite straight cylinders with radius a=0.4545 
and separated r=1 (normalized units), parallel to the z-axis are located at (Ri, θi) of diameters Di with 

Figure 1 (A) Acoustic Band Structure of a Sonic Crystal with 
square periodicity (r=1m, a=0.4545). Beam propagation trhough 
the crystal for different beam widths (B) s=0.5, (C) s=2, and (D) 
s=1000 (plane wave) at f=170Hz 
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where Als are determined by the solution of the system of equations obtained by MST, rl and θl are the 
polar coordinates of the measuring point respect to the l–th scatterer and σ determines the width of the 
beam.  
 
The transmission properties of the crystal are evaluated using MST. Figure 1A shows the band struc-
ture of the SC obtained using the plane wave expansion2. For a frequency lying in the Band Gap Fig-
ures 1B,1C and 1D show the transmission of beams with different sizes impinging at the left side of 
the crystal. The attenuation is optimized if the width of the beam is similar to the size of the sample. 

For wider beams (Figure 1D), the diffraction effect at the edges becomes important. The propagation 
of waves around the sample increases the total sound field behind the crystal. In the case of very nar-
row beams (Figure 1B), the propagation through the crystal is like in a homogeneous medium. In this 
case, the beam is not impinging the scatterers, and despite the frequency corresponds to the bandgap, 
it propagates through the crystal with a very low attenuation. 
 

Special phenomena like focalization induced by propagation in a periodic medium may be significant-
ly altered if the size of the beam is considered. For very narrow beams (Figure 2B) the Sonic Crystal 
in the second and third bands splits into three beams. Besides, for a beam as wide as the sample (Fig-
ure 2C) the focalization is produced some periods behind the crystal. 

References 
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(2006). 
2 M.S. Kushwaha, P. Halevi, G Martínez, L dobrynski and Djafari-Rouhani. Phys. Rev. B 49, (4) 2313 (1994). 
 
 

Figure 2. (A) Iso-frequency contours of the Bloch modes for the same SC as in Figure 1. The curves correspond to 
f=270Hz (second and third bands, in red in Figure 1A). Blue and green lines represent the projection on the curves of 
the spatial components of a wide and narrow beam respectively. Beam propagation behind the crystal for (B) a narrow 
beam (s=0.5) and (C) a plane wave (s =1000).  
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Broadband Vibration Attenuation Induced by Periodic
Arrays of Feedback Shunted Piezoelectric Patches on

Beams
Gang Wang , Shengbing Chen, Jihong Wen
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and the Key Laboratory of Photonic and Phononic Crystal, Ministry of Education, China

wg.nudt@gmail.com

Abstract: The effect of periodic arrays of feedback shunted piezoelectric patches in vibration
attenuation of flexible beams is analyzed theoretically and experimentally. Broadband
vibration attenuations are observed no mater in or out of the band gaps. The proposed concept
is validated experimentally on a suspended epoxy beam.

The present work involves a feedback shunting strategy in the phononic crystals (PCs) composed of
periodic array of shunted PZT patches and a flexible beam for the broadband attenuation of vibration.
The effect of periodic arrays of feedback shunted piezoelectric (PZT) patches in vibration attenuation
of flexible beams is analyzed theoretically and experimentally. Each pair of surface-bonded
piezoelectric patches is linked with a uniform and isolated feedback circuit. The voltage generated by
one piezoelectric patch of the pair is amplified and applied to the other. Numerical model based on the
transfer matrix methodology are developed to predict the transmission of vibration and the frequency
ranges of band gaps in the proposed periodic smart structure. Broadband vibration attenuations are
observed no mater in or out of the band gaps. The proposed concept is validated on a suspended
epoxy beam driven by a shaker. Experimental results are presented in terms of vibration transmissions
recorded using two accelerometers placed on both sides of the beam.

As illustrated in Fig. 1, pairs of PZT
patches are periodically stuck to the
surface of a beam to construct a 1D PC.
Each pair of PZT patches are placed
with opposite polarizing directions
along the z-axis and linked with a
uniform shunting circuit. The beam’s
segments with the PZT patch are
denoted as I, while the others are
denoted as II. Each shunting circuit is composed a operational amplifier (opamp) and two resistors R1
and R2. The voltage signal from one PZT patch is amplified and adds on the other. We call it the
feedback shunts.
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Figure 2 illustrates the calculated attenuation constants of 1D PCs containing different shunting
circuits. The dashed lines in Fig. 3 represent the results corresponding to the feedback shunting circuit

Figure 1 Beam with arrays of PZT patches and feedback shunting circuits.
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Figure 2 Calculated
attenuation constants of the
one-dimensional phononic
crystals composed of an
epoxy beam and shunted
PZT patches. The solid,
dotted and dashed lines
represent the results for
short, resistance, and
feedback shunting circuits
respectively.
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in this paper. For comparison, results corresponding to the resistance (R1) shunting circuit and short
circuit are also calculated and illustrated as solid and dotted lines in Fig. 2, respectively. Compared
with other shunting circuits, the feedback one can evidently increase the attenuations at almost all
frequencies no matter in or out of band gaps. In detail, original band gaps are widened and the
corresponding attenuations are strengthened. Moreover, the attenuations out of band gaps that caused
by damping are also enlarged dramatically by the feedback shunting circuits.

To validate the theoretical results, vibration experiments were performed on a 1D PC composed of an
epoxy beam and periodic arrays of PZT-5H patches. The total length of the beam was 0.64 meters,
where a periodic structure with 8 periods is constructed.

Figure 3 illustrated the
measured transmission of the
1D PC. The overall view of the
experimental results is shown in
Fig. 3(a), while other subfigures
(b)-(d) are zoomed in view of
Fig. 3(a) within different
frequency ranges. For
comparison, the transmission of
the 1D PC with short cut
circuits, i.e., all electrodes of
the PZT patches are shorted, is
plotted as thin solid line in Fig.
3. All the experimental results
illustrate in Fig. 3 basically
match with the theoretical
predictions. Moreover, the
dashed and dotted lines in Fig.
3 represent the results
corresponding to that only 5 or
2 PZT patches near the exciting
point that are connected to the
feedback shunting circuits.
Coinciding with a basic
characteristic of PCs, the
attenuations are always
weakened proportionally when
the number of periodicity
decreases.
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Figure 3 Measured transmission of the 1D phononic crystal with feedback
shunting circuits. The thick solid lines, dashed line and dotted line represent the
results corresponding to the cases when 8, 5 and 2 PZT patches near the
exciting point are connected with the feedback shunting circuits, respectively.
The thin solid lines represent the result when all electrodes of the PZT patches
are shorted and are used for comparison.
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Phase-controlling properties in phononic crystals 
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Abstract: We deliver a complete phase-space analysis of two well-studied PC systems to reveal 
the mechanisms behind phase-manipulation of propagating elastic waves in these composite 
structures. A triangular-array of steel cylinders embedded in a host matrix of methanol and a 
square-array of Polyvinylchloride cylinders embedded in a host matrix of air show band structures 
and equi-frequency contours (EFCs) with very different features, yet phase-control is possible in 
both systems. We find that phase-control depends on (1) whether or not the wave and group 
velocity vectors in the PC are collinear and (2) whether or not the excited Bloch waves in the PC 
have the same phase velocity. The results gathered in this study can be used to draw general 
conclusions about the reality of phase-control in many other types of PCs.  
 

 
Phononic crystals (PCs) are composite materials comprised of periodic arrays of elastic inclusions 
embedded in an elastic matrix. The majority of research in the field of phononics has been aimed at 
understanding how the scattering of elastic waves impacts the spectral and wave-vector properties of the 
crystal. Past efforts have shown PCs with numerous, useful properties including transmission band gaps, 
local wave-guiding modes, filtering and multiplexing capabilities, and unique refractive behavior [1-4]. 
Several functional acoustic devices have resulted from exploitation of these exceptional properties. 
Progress in the field of phononics is directly coupled to the development of new acoustic based 
technologies, and for this, it is important for researchers to adventure beyond the contemporary 
functionalities of today’s PCs.  
 
An avenue that has been overlooked in the field of phononics is the impact PCs have on the relative phase 
of propagating elastic waves. The concept of phase-control between incident waves in any PC can be 
realized through thorough analysis of its band structure and equifrequency contours (EFCs). One 
condition must firstly be satisfied for the possibility of phase-control: all incident elastic waves that are 
transmitted through the PC must have an associated Bloch wave with a non-zero degree of refraction. If 
the degree of refraction for all incident waves is zero, then the projection of each wave vector in the PC 
onto the direction consistent with the group velocity vector is the same and a phase-shift cannot possibly 
result. The EFC corresponding to this very unique scenario is a perfect square either centered on or off the 
gamma point. With the knowledge that positive or negative refraction must occur, there are two general 
schemes amongst PC EFCs that outline the possibility for phase-control. One scheme is where the phase 
velocity of all excited Bloch modes is identical—a circular EFC centered on the Gamma point has such a 
property because the magnitude of all wave vectors in the PC is the same. A relative phase-shift between 
propagating waves in this type of PC comes from waves of the same phase velocity traveling different 
distances through the crystal. The second scheme applies to most PC EFC structures. In the case where 
wave vectors in the PC are non-collinear with group velocity vectors (phase velocities of Bloch waves are 
different) and each excited Bloch wave has a unique degree of refraction, a relative phase shift occurs 
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between propagating waves. Each wave vector in the PC projects differently onto its associated path of 
propagation (group velocity vector) and the phase velocity of the excited mode is different along this 
path, giving a slightly different quantification for phase shift as compared to scheme one. Interestingly, 
since these two scenarios apply to most types of PC EFCs, phase-control can be realized with a large 
number of different PCs. Changing the incident angles of the elastic waves entering the PC, varying the 
PC length, and altering the initial relative phase between input signals, are some means of controlling the 
output signal of the PC device. Such knowledge can possibly enhance the performance of current acoustic 
based technologies utilizing PCs and lead to completely novel concepts of future phononic devices. 
 
We investigate the phase-properties of two PCs to link EFC features with the phase-relationship between 
propagating elastic waves. Our first PC is a triangular lattice of steel cylinders embedded in a host matrix 
of methanol, all in water. The diameter of the inclusions is 1.02 mm and the lattice spacing is 1.27 mm. 
Our second PC is a square lattice of Polyvinylchloride (PVC) cylinders embedded in a host matrix of air, 
all in a surrounding environment of air. The diameter of the inclusions is 25.8 mm and the lattice spacing 
is 27 mm. The first PC, at an operating frequency of 530 – 570 kHz, has a circular EFC centered on the 
Gamma point whereby the wave and group velocity vector are collinear and the phase-velocity of all 
excited Bloch modes is identical. The second PC, at an operating frequency of 13.5 kHz, has a square-like 
EFC centered off the Gamma point. Here, the wave and group velocity vectors are non-collinear and each 
excited Bloch mode has a unique phase velocity associated with it. Figure 1 shows the relative phase-shift 
between several pairs of incident acoustic waves for the PC consisting of a triangular lattice of steel 
cylinders embedded in a host matrix of methanol (550 kHz). Figure 2 shows the relative phase-shift 
between several pairs of incident acoustic waves for the PC consisting of a square lattice of PVC 
cylinders embedded in a host matrix of air (13.5 kHz). By utilizing the phase-information contained in 
Figure 2 and including an additional assessment for the phase-shift incurred on the exit side of the PVC-
Air PC, we demonstrate complete control over the relative phase of two acoustic inputs by modulating 
their initial relative phase by π and 2π radians. Figures 3a and 3c show finite-difference-time-domain 
simulations (plots of instantaneous pressure) of two acoustic beams entering the PVC-Air PC. Figure 3a 
shows a crystal of length 621mm and Figure 3c shows a crystal of length 1242 mm. The time average of 
instantaneous pressure taken over one cycle (reported as average pressure) is shown in Figures 3b and 3d. 
Average pressure readings are taken along cuts where the acoustic beams intersect (black lines in Figures 
3a and 3c). If the beams are in-phase, the average pressure reading will yield a maximum. If the beams 
are out of phase, the average pressure cut will show a minimum. Figure 3b shows that with a crystal of 
length 621mm, we observe a change in relative phase of π—the input average pressure cut shows a 
minimum, while the output average pressure cut shows a maximum. Figure 3d shows that with a crystal 
of length 1242mm, we observe a change in relative phase of 2π— the input average pressure cut shows a 
minimum and the output average pressure cut shows a minimum. This demonstrates a phase modulation 
of π and 2π radians based solely on changing the PC length. Similar control can be achieved by altering 
the angles and keeping the PC length constant. This is one example, of many, where precise phase-control 
exists between acoustic beam pairs.  
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New Directions in the Analysis of Nano-Scale Phononic 
and Nonlinear Metamaterial Systems  

Michael J. Leamy1  
1 George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology,771 Ferst Drive 

N.W., Atlanta, GA, USA  
michael.leamy@me.gatech.edu 

 
Abstract: This talk will focus on two directions being pursued by the author and his co-
workers in the areas of (i) multi-scale modeling of phonon spectra and dispersion in reduced 
dimensional nano-scale systems (e.g., carbon nanotubes), and (ii) analysis of phononic wave 
propagation in nonlinear metamaterials using asymptotic techniques.  

 

The first part of this talk will address a multi-scale modelling approach being pursued by the author 
for predicting phonon spectra and dispersion in reduced dimensional materials, such as graphene 
sheets, nanotubes, and nanotoroids. For reduced-dimension nanophononic systems with large unit 
cells (e.g., ‘supercells’ housing defects or unit cells capturing non-ideal geometries such as embodied 
by ‘wavy’ nanotubes), manifold-based finite element modelling is advantageous for several reasons, 
to include large reduction in degrees of freedom, applicability to complex geometries, and the pres-
ence of a natural curvilinear basis for describing wave vector components.  Reduced-dimension mate-
rials are quite unlike full-dimensional materials in that they are neither space-filling nor simply-
connected, and thus require manifolds for representation. For example, a carbon nanotube unit cell 
must fully wrap around the circumference in order to truly repeat, which results in two ends of the 
unit cell sharing the same atoms.  This complex geometry can be described efficiently using an intrin-
sic set of basis vectors whose (reduced) dimension equals the dimension of the manifolds describing 
the system. Continuum modeling on manifolds generates the necessary basis vectors, while signifi-
cantly reducing the degrees of freedom. 

 

 
Figure 1 (a) Continuum computation approach used to study reduced-dimension materials.  Intrinsic basis vectors Gi and the 
use of representative area elements to sample interatomic potential energy allow the phonon spectra to be accurately pre-
dicted. (b) Typical acoustic mode of vibration predicted using the continuum approach. 

A recently-developed multi-scale continuum approach1 forms the basis for reduced-order modeling of 
the reduced-dimension nanophononic systems (see Fig. 1a for an example nanotoroid) discussed dur-
ing the talk. This approach employs intrinsic basis vectors defined on a reduced-dimension surface 
(manifold) of the nanostructured material. Changes in interatomic potential energy arising from lattice 
vibrations are equated to changes in continuum strain energy, allowing non-quantum atomistic beha-
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vior to be captured using continuum techniques. The energy change is sampled using representative 
area elements. A subsequent finite element discretization results in a significant decrease in the de-
formation degrees of freedom present, while at the same time accurately capturing the acoustic range 
of the phonon spectra. Figure 1b displays a typical acoustic mode of vibration predicted using this 
procedure. Applying Bloch analysis, dispersion relationships have also been obtained and will be dis-
cussed during the talk. In particular, the author will discuss the accuracy of the obtained acoustic and 
optic branches, and will discuss in general what can be expected from any multi-scale approach. 

The second part of this talk will address asymptotic techniques being developed by the author and his 
co-workers for analyzing wave propagation in nonlinear periodic metamaterials. Gigahertz communi-
cation devices, such as mobile phones, use phononic-based systems for their low-power filtering char-
acteristics. Many sensing devices based on resonators, acoustic logic ports, and surface acoustic 
wave-based filters rely on the unique band gap characteris-
tics of phononic crystals, an important class of periodic 
metamaterials. The majority of recent research on wave 
propagation in periodic metamaterials has been devoted to 
linear media, with little attention paid to characterize, ana-
lyze and exploit the effects of nonlinearities for wave 
propagation management and control. As devices miniatur-
ize further, nonlinear behavior becomes the norm and not 
the exception, as witnessed in part by the complex poten-
tials used to describe small-scale interactions. The effects 
nonlinearities exert on dispersion characteristics, band-
gaps, and directionality have not been the focus of a con-
certed research effort, and as a result are not well-
understood. Most importantly, nonlinearities should be ex-
plored as means to achieve novel functionalities which po-
tentially enrich the design space of periodic media. 

The considerations above have led us to investigate discrete (and continuous systems following dis-
cretization) of the following form, 

 1, 1,1 1, 1,1( , ) ( , , ) 0L NL
j j jj N j j N ju u F u u F u u u        ,    (1) 

where the displacement vector ,1 ,2 ,3 ,[ ..... ]T
j j j j j Nu u u u u  contains the displacements of the masses of 

the thj unit cell, the unit cell mass and stiffness matrices are denoted by N NR  and N NK R  , and 
1L NF R   contains linear restoring forces associated with masses neighboring the unit cell while 
1NL NF R  contains all nonlinear restoring forces. As such, (1) governs an open set of nonlinear dif-

ference equations and therefore requires a solution procedure unlike that traditionally used in weakly 
nonlinear systems. However, ideas similar in spirit to the Lindstedt-Poincaré and multiple scales per-
turbation techniques have been developed by the author and co-workers to solve for amplitude-
dependent dispersion relations corrected up to second order2,3. 

Figure 2 plots the dispersion trend for the two wave modes predicted by the perturbation analysis of a 
cubically-hardening chain. The trends pictured have been verified via comparison with numerically 
simulated diatomic chains2. The figure demonstrates that an increase in wave amplitude shifts both 
dispersion branches upwards, effectively moving (or tuning) the band gap location. We have also pre-
dicted similar dispersion shifts when multiple waves interact3. Possible devices exploiting this ampli-
tude-dependent dispersion behavior will be discussed during the talk.  

References 
1 Leamy, M.J., and DiCarlo, A., Comput. Method. Appl. M. 198, 1572-1584 (2009). 
2 Narisetti, R.K., Leamy, M.J., and Ruzzene, M., J. Vib. Acoust. 132(3): 031001 (2010). 
3 Manktelow, K., Leamy, M.J., and Ruzzene, M., 2010, Nonlinear Dyn. 63, 193-203. 

Figure 2 Amplitude-dependence of diatomic 
chain’s dispersion behavior. 
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An Effective Medium Model for Sonic Crystals with  
Composite Resonant Elements 

Olga Umnova1 , Anton Krynkin1, Alvin Y.B.Chong2, Shahram Taherzadeh2,  

Keith Attenborough2 
1 Acoustics Research Centre, The University of Salford, Salford, Greater Manchester, UK,  

o.umnova@salford.ac.uk, a.krynkin@salford.ac.uk 
2 Department of Design Development, Environment and Materials, The Open University, Milton Keynes, UK 

y.b.a.chong@open.ac.uk,  s.taherzadeh@open.ac.uk, k.attenborough@open.ac.uk 
 

Abstract: Using a self-consistent method, analytical expressions are derived for the parame-
ters of an effective medium of composite scattering elements in air. The scatterers consist of 
concentrically arranged thin elastic shells and 4-slit cylinders. Predictions and data confirm 
that the use of coupled resonators results in a substantial insertion loss peak related to the 
modified resonance of the shell.  

Periodic arrays of resonant scatterers such as thin elastic shells 1 or split ring resonators 2-3can support 
low frequency band gaps in addition to those associated with array periodicity 1. With finite periodic 
arrays they correspond to frequency intervals of low transmission and lead to an improved attenuation 
below the first of the Bragg’s band gaps. To describe low frequency behaviour, an effective medium 
model has been developed for an array of c concentrically arranged hollow rigid cylinderswith multi-
ple slits (N-slit rigid cylinder) and thin elastic shells (Fig.1).  

The composite scatterer is a system of coupled reso-
nators and gives rise to multiple resonances. The cor-
responding analytical model employs polar angle 
dependent boundary conditions on the surface of N-
slit cylinder. The solution inside the slits assumes 
plane waves. The simplified low frequency descrip-
tion of the composite scatterer relies on the replace-
ment of the N-slit cylinder by an equivalent fluid 
layer. The concentric arrangement results in reso-
nances associated with both circular and annular 
cavities. An axisymmetric resonance of the shell is 
preserved but shifted to the lower frequency range by 
the presence of the cavity. This is similar to the effect 
observed in mass-spring system with multiple de-
grees of freedom.  

Using a self-consistent approach 4, e analytical expressions are derived for the characteristic imped-
ance and the wavenumber of an effective medium comprised of composite scatterers in air. The ap-
proximation is applicable when wavelengths in both air and effective medium exceed the size of a 
single scatterer. The model takes into account viscoelastic losses in the shells. The effective medium 
model predictions are compared with the solutions for infinite doubly periodic arrays and insertion 
loss data for finite arrays of composite scatterers. In laboratory experiments 2m long and 0.25mm 
thick Latex cylinders with outer diameter of 43mm and 55mm outer diameter slitted PVC pipes were 
used. Concentric arrangements of pairs of Latex and 4-slit PVC cylinders were formed as shown in 
Figure 1.The cylinders were arranged in a periodic (square) array with lattice constant of 8cm. The 
Bragg frequency for the array is around 2kHz. It is demonstrated that the model predicts negative real 
part of the effective compressibility around the modified axisymmetric shell resonance (Fig.2) at 
1.1kHz. 

 
Figure 1. Cross-section of composite element consist-
ing of a concentric arrangement of an outer 4-slit rigid 
cylinder and an inner elastic cylindrical shell.  

Phononics 2011: First International Conference on Phononic Crystals, Metamaterials and Optomechanics
Santa Fe, New Mexico, USA, May 29-June 2, 2011

PHONONICS-2011-0076

1



169

Phononics 2011 	 Track 3: Periodic Structures
 

Phononics 2011: First International Conference on Phononic Crystals, Metamaterials and Optomechanics 

Sharm El-Sheikh, Egypt, May 29-June 2, 2010 

PHONONICS-2011-XXXXX 

 

  As shown in Fig. 3, for an array of 
21 composite scatterers the effective 
medium model correctly predicts the 
frequency of the corresponding inser-
tion loss peak, but overestimates its 
value.  

Plane waves were assumed and the 
array was modelled as infinitely wide 
slab. One of the reasons for dis-
agreement is the limited validity of 
the plane wave approximation; the 
second is the inapplicability of the 
long wave approximation around the 
resonant frequency. A better agree-
ment is obtained between the effec-
tive medium model and multiple 
scattering theory predictions for lar-

ger arrays with receiver placed fur-
ther away from the array. Charac-
teristic impedance and wavenum-
ber are deduced from laboratory 
data and predictions of the multiple 
scattering theory using methods 
developed in paper 5 and compared 
with those predicted by the effec-
tive medium model.  

References 
1 A.Krynkin, O.Umnova, A.Y.B.Chong, 
S.Taherzadeh and K.Attenborough,, 
J.Acoust.Soc.Am, 128, 3496-3506 (2010). 
2 A.B.Movchan, S.Guenneau, Phys.Rev.B, 
70, 125116 (2004) 
3 S.G.L.Smith, A.M.J.Davis, Proc.R.Soc.A, 
466, 3117-3134 (2010) 
4 J.G.Berryman, J.Acoust.Soc.Am, 68, 1809-
1819 (1980). 
5 V.Fokin, M.Ambati, C.Sun, X.Zhang, 
Phys.Rev.B 76, 144302 (2007)  
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Figure 2. Real part of normalised effective density (      ) and effective 
compressibility (       ) as a function of frequency.  
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Figure 3. Multiple scattering (     ) and effective medium (       ) predictions 
compared with data (    ) for 7X3 array of composite scatterers. Distances to 
the source and receiver are 1.5m and 0.05m, respectively. 
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








 

     

  
  

    
    
       
   


   
    
     



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   
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  
       
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   
   
    
            
    
  
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 
            
 
  
 
           
  
 
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







 
  
            



 

      

 



       
       
   
    
    
  

  
  

      
    
  
                 
   


Phononics 2011: First International Conference on Phononic Crystals, Metamaterials and Optomechanics
Santa Fe, New Mexico, USA, May 29-June 2, 2011

PHONONICS-2011-0079

2



172

Track 3: Periodic Structures	 Phononics 2011
 

Phononics	
  2011:	
  First	
  International	
  Conference	
  on	
  Phononic	
  Crystals,	
  Metamaterials	
  and	
  Optomechanics	
  

Sharm	
  El-­‐Sheikh,	
  Egypt,	
  May	
  29-­‐June	
  2,	
  2010	
  

PHONONICS-­‐2011-­‐XXXXX	
  

 

1 

 

2R

2R-­‐δ0

F0

(a)

(b)

Second harmonics, instabilities and hole solitons in 1D 
phononic granular chains 

Víctor J. Sánchez-Morcillo1*, I. Pérez-Arjona1, V. Gusev2, V. Tournat3 
1 IGIC, Universidad Politécnica de Valencia, Paranimf 1, 46730 Grau de Gandia, Spain,  

2 LPEC, 3 LAUM, CNRS, Université du Maine, Av. Olivier Messiaen 72085, Le Mans, France 
*victorsm@upv.es 

 
Abstract: The propagation of nonlinear compressional waves in a 1D compressed granular 
chain driven at one end by a harmonic excitation is theoretically studied. The chain is de-
scribed by a FPU lattice model with quadratic nonlinearity. We predict and describe different 
nonlinear phenomena, as the generation of second harmonics, modulational instabilities and 
the existence of hole (or dark) solitons.  

We consider the propagation of a harmonic signal applied to one end of a homogeneous 1D chain of 
spherical beads in contact, each with a mass m and a radius R, as shown in Fig. 1. Under the effect of 
an external constant force 0F  [Fig.1] the chain is compressed, and the distance between centers is re-

duced by an amount δ0 resulting in a = 2R−δ0. Denoting by nu  the displacement of the n-th bead from 
its equilibrium position, and assuming that the beads 
repel upon Hertz-type potential V (!)!! 5/2 , with 
! = !0 ! (un !un!1) being the bead-bead overlap, the dy-
namics of the chain is described by a system of coupled 
ordinary differential equations for the displacements, 
which for !0 >>| un !un!1 |  can be written as a quadratic 
FPU equation, as [1] 

d2un
dt2

=
1
4
un+1 ! 2un +un!1( )! !

8
un+1 ! 2un +un!1( ) un+1 !un!1( )   (1) 

where ! = u0 / 2"0  is the nonlinearity parameter. We consider a driven lattice, subjected to the bounda-
ry condition u0 (t) = sin(!t) , being Ω the driving frequency. Neglecting nonlinearity, we obtain the 
dispersion relation of the chain, != sin k / 2( )  defining the cutoff frequency Ω=1. 

A successive approximations method is used to find the analytical 
expressions for the amplitudes of the static displacement field, and of 
the fundamental and second harmonics propagating through the lat-
tice. We distinguish two regimes, depending on whether the second 
harmonic is a propagating (0<Ω<1/2) or evanescent (1/2<Ω<1) 
mode. The results for the propagative case are shown in Fig. 2, where 
we depict the amplitude of the different modes. Note the mode beat-
ing induced by the lattice dispersion. In both cases, it is found that 
second harmonic is present, and influences the propagation character-
istics of the fundamental mode. The comparison of the analytical re-
sults (full lines) and numerical results (dots) is shown in Fig. 2.   

 

Figure 1 1D chain of spherical beads in contact 
compressed by an external constant force.  

Figure 2. Amplitudes of the different modes (static, fundamental and second 
harmonic) in the case ε=0.1 and Ω=0.4 (propagative case) along the chain, for 
the first 100 beads. Note the linear growth of the static mode, and the beatings 
of fundamental and second harmonics.  

0 20 40 60 80 100
n (bead position)

0

0.4

0.8

1.2

1.6

2

dc
 m

od
e

0.98

0.99

1

1st  h
ar

m
on

ic

0.05

0.1

0.15

2nd
 h

ar
m

on
ic

Phononics 2011: First International Conference on Phononic Crystals, Metamaterials and Optomechanics
Santa Fe, New Mexico, USA, May 29-June 2, 2011

PHONONICS-2011-0098

1



173

Phononics 2011 	 Track 3: Periodic Structures
 

Phononics	
  2011:	
  First	
  International	
  Conference	
  on	
  Phononic	
  Crystals,	
  Metamaterials	
  and	
  Optomechanics	
  

Sharm	
  El-­‐Sheikh,	
  Egypt,	
  May	
  29-­‐June	
  2,	
  2010	
  

PHONONICS-­‐2011-­‐XXXXX	
  

 

2 

 

The successive approximations method allows predicting the amplitudes of the different modes prop-
agating in the chain, but is not appropriate to study other dynamical effects induced by the nonlineari-
ty, like instabilities or envelope solitons. In other to study these phenomena, a technique based in a 
multiple scales expansion method together with the so-called quasi-discreteness approximation [2] is 
used instead. Considering both slow temporal and spatial scales, the following equation for the enve-
lope A of the fundamental wave can be obtained: 

!A
!!

= iP !
2A
!xn

2 + iQ A 2 A,       (2) 

where P = 1
2
!2"
!k2

is the dispersion coefficient, Q =
1
4
! 1"3!2( )! 2 the nonlinearity coefficient and we 

have defined the retarded time ! = t ! xn / vg  where xn identifies the bead position and vg the group 
velocity. Equation (2) is the well-known Nonlinear Schrödinger (NLS) equation. The NLS equation 
provides a canonical description for the envelope dynamics of a quasi-monochromatic plane wave 
(the carrying wave) propagating in a weakly nonlinear dispersive medium when dissipative processes 
are negligible [3]. From Eq. (2) it follows that the uniform solution is always modulationally unstable 
when PQ > 0, provided some threshold amplitude is reached. This is known as the Benjamin-Feir in-
stability and results in a long-wavelength modulation of the propagating signal, which eventually 
breaks into a sequence of pulses or bright solitons. Since in Eq. (2) P is always positive, the analysis 
predicts that constant amplitude solutions (plane waves) can be unstable when 
!<!mi =1/ 3 " 0.577 . On the contrary, when ! >!mi  and solutions are stable, the chain supports 
propagative localized solutions known as dark (or grey) hole solitons. They have the analytical ex-
pression  

A = A0 1! d
2 sech2 x ! vt

L
"

#
$

%

&
'ei(      (3) 

which is an exact solution of Eq. (2). The existence and stability of such solutions has been demon-
strated numerically, and the results are shown in Fig. 3 for ε=0.3 and Ω=0.8. The temporal behaviour 
of bead labelled as N=50 is shown at the right. The left picture compares the numerical solution with 
the analytical profile given by Eq. (3), shown in continuous line. The agreement is excellent, demon-
strating the existence of the predicted hole solitons. While bright solitons in granular chains have been 
deeply studied, this is the first prediction of hole solitons in such discrete systems. 

 

 
 

    The work was financially supported by the MICINN of the Spanish Government, under FIS2008-
06024-C03-03, and by ANR projects “grANuLar”, NT05-3_41989, and “Stabingram”. 
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Figure 3. Hole soliton obtained for 
the case ε=0.3 and Ω=0.8. The tem-
poral behaviour of bead labelled as 
N=50 is shown.  
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Theoretical and Experimental Evidence of Evanescent 
Modes in Finite Sonic Crystals 

V. Romero-García1,3 , L.M. Garcia-Raffi2, J.V. Sánchez-Pérez3 
1 Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Spain  

virogar1@gmail.com, 
2 Instituto Universitario de Matemática Pura y Aplicada, Universidad Politécnica de Valencia, Spain 
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virogar1@gmail.com, jusanc@fis.upv.es  
 

Abstract: Evanescent modes in complete sonic crystals (SC) and SC with point defects are 
both theoretically and experimentally reported in this paper. Finite element method and an ex-
tension of the plane wave expansion with supercell approximation to solve the invers problem 
k(ω) is used to predict the evanescent modes. Experimental data and numerical results are in 
good agreement with the predictions. 

Propagating waves inside a periodic medium represent a set of solutions to the wave equation that 
satisfy the translational symmetry and they are characterized by the transmission bands obtained using 
the Bloch’s theorem and Fourier expansion of the periodic physical properties. Then the acoustic 
wave equation can be transformed in an eigenvalue problem and solved using for example the plane 
wave expanssion (PWE) method. The eigenfrequencies ω(k) for each Bloch’s vector k, inside the irre-
ducible part of the first Brillouin zone constitute the bands structure. One of the most important prop-
erties revealed by these bands is the so-called band gaps (BGs): frequency ranges where waves do not 
propagate through the periodic system. The existence of these BGs leads to the emergence of several 
interesting physical properties, such as the localized modes within the BG when a point defect is in-
troduced in the structure. 

When the translational symmetry is broken, evanescent modes characterized by a complex wave 
number k, can emerge in these systems. In contrast to infinite periodic media, in the case of the finite 
ones, the modes inside the BG present evanescent behaviour, growing the decay rate of the mode as 
the frequency reaches the center of the BG. In Figure 1 we can analyze the evanescent behaviour of a 

mode inside the BG of a finite 
Sonic Crystal (SC) made of rigid 
cylinders with radius r=0.1 m ar-
ranged in square periodicity 
a=0.22 m, at the frequency 920 
Hz. The absolute value of the pres-
sure in the points between two 
rows of the SC has been numeri-
cally calculated, using finite ele-
ments method (FEM). The numer-
ical predictions and experimental 
results are plotted in Figure 1 with 
black continuous line and con-
nected open red circles respective-
ly. It is possible to observe the de-

cay of the mode with the distance 
all along the SC. With these expe-
rimental results, the decay of the 
evanescent mode inside the BG can 
be fitted. In order to fit an exponen-
tial decay aebx the points with max-
imum values have been chosen. 

The values of the parameters in the fit are a=0.05597±0.0103 Pa, and b=Im(k)=-5.60±1.45 m-1, and 

Figure 1 Acoustic pressure inside a 5x5 SC with square array with lattice 
constant a=22 cm for a frequency inside the BG of 920 Hz. Black continuous 
line (connected red open circles) represents the absolute values of the nu-
merical (experimental) pressure inside the SC between two rows of scatter-
ers. Red dashed line represents the fitting of the exponential like decay of the 
measured acoustic field inside the SC. The inset represents the measurement 
points inside the SC and both the complex and real band structures. 
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the result is plotted in Figure 1 in red dashed line. In the inset of Figure 1, we show the complex band 
structure calculated using the extended plane wave expansion (EPWE) in order to solve the inverse 
problem k(ω) being k possibly complex. The value of the imaginary part of the first harmonic of the 
wave vector is marked in the complex band structure with a red square. One can see that Im(k)=-5.6 
m-1 at frequency 920 Hz in a complete SC. 

One particularly interesting aspect of SC is the possibility to create point defects that confine acoustic 
waves in localized modes. Because of the locally breaking periodicity of the structure, defect modes 
can be created within the BG. These defect modes are strongly localized around the point defect3: 
once the wave is inside the defect, it is trapped because the borders of the defect act as perfect mirrors 
for waves with frequencies in the BG. To analyze the propagation of waves inside periodic structures 
with defects, authors have traditionally used PWE with supercell approximation. In this work, we de-
velop the supercell approximation to the EPWE. This methodology enables us to obtain the relation 
k(ω) for N defect modes in a periodic medium.  

Figure 2A shows the complex band structures for the ΓX direction and real band structures for an SC 
with a point defect. In our case, we use only one direction of incidence to analyze the complex band 
structure because the localized mode appears at the same frequency for all the incidence directions. 
The supercell used for the calculations is shown in the inset of Figure 2A.  

Analyzing the real band structures (propagating properties) we can observe that the localized mode 
appears at 920 Hz (green dashed line). For frequencies in the BG, the borders of the point defect act as 
perfect mirrors and produce the localized mode in this cavity. Figure 2B presents the numerical results 
of the acoustic field inside a point defect in a SC in complete good agreement with the experimental 
data. Figure 2C represents the measurements of the localized mode in a cavity obtained for the first 
time.  

In Figure 2A, the complex bands give information about the evanescent behaviour of the localized 
mode. We observe that a complex band obtained by EPWE becomes a purely real for the localized 
mode (green dashed line). The value exactly coincides with the one obtained by PWE with supercell 
approximation. The border of the cavity is located at approximately x=0.6 m as it can be observed in 
Figure 2B.  Figure 2D presents both numerical (blue line) and experimental (blue open squares) val-
ues of the acoustic field from the end of the cavity to the end of a SC, showing the evanescent beha-
viour of the localized mode outside the cavity.  

The propagation of waves 
inside periodic structures 
consists on both propagat-
ing and evanescent modes. 
This work could well be-
come fundamental for the 
correct understanding of 
the design of narrow filters 
and waveguides based on 
periodic media with point 
defects. 
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Figure 2 Evanescent behaviour of a localized mode in a point defect. (A) Complex (Blue 
lines) and Real (black lines) bands structures for a SC made of rigid scatterers with a 
point defect. Square periodicity a=0.22 m and radius r=0.1 m. (B) Numerical prediction 
of the acoustic field inside the point defect at the localization frequency, 920 Hz. (C) 
Experimental measurement of the localized field inside the point defect. (D) Analysis of 
the evanescent behaviour of the localized mode. Blue continuous line (Open blue 
squares) represents the numerical predictions (experimental data) of the acoustic field in 
the path between two rows of cylinders containing the point defect marked with a broad 
orange dashed line. Red dashed line shows the fitting of the exponential like decay of the 
localized mode. 
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Interaction between Periodic Arrays and Finite Imped-
ance Surface: Analytical Results and Experimental Data 
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Abstract: The design of devices based on phononic crystals seems a hot topic nowadays. 
However, there are some effects that have to be into account for the development of their 
technology, as for instance the existence of a close surface that could interfere with their 
acoustic properties. We present here an analytical model to analyze this interaction based on 
the Multiple Scattering Theory in good agreement with experimental data. 

The acoustic interaction between both the scattered field produced by a phononic crystal (PC) and the 
reflected field from a line source in a finite impedance surface is reported in this work. This interfer-
ence pattern is analyzed using an analytical model, based on the multiple scattering theory1,2, called by 
us Image Multiple Scattering Theory (IMST). The analytical predictions have been compared with 
experimental data showing good agreement. We have considered throughout this work a line source 
and the case of cylindrical scatterers in air. Although the most interesting situation is likely to involve 
periodic arrays of cylinders with their axes perpendicular to the surface, this would require solution of 
a 3D problem. Therefore we have considered the tractable 2D problem involving a periodic array of 
cylinders with their axes parallel to the surface.  

This analytical method developed in this work modifies the classical Multiple Scattering Theory using 
the method of images in order to add the reflected field on the finite impedance surface. According to 
this methodology, two sources have been considered: the real source located in the real space and an 
image source located in the image space. Moreover, the image of the real array is also considered to 
solve the problem. In Figure 1 (left panel), we represent the real case for a square array of cylinders 

with lattice constant a, 
and radius r. In Figure 
1 (right panel) we show 
the scheme of images: 
one can observe the 
real space XY with the 
real array of scatterers 
and the real source O, 
and the image space 
(XY´) with the image 
array of scatterers and 
the image source O´. 

To add the effect of the 
surface in our analyti-
cal scattering model, 
we have characterized Figure 1 Left panel: Array of scatterers in the real case. Right panel: scheme of the method 

of images for the array of the left panel. 
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it by means of the reflection coefficient R(rO,rC; ν) of the surface. If R(rO,rC; ν)=1 we are in the case 
of acoustically hard ground but, generally speaking, R(rO,rC; ν) will be a function that will depend on 
the positions of both the source and the receiver and on the frequency. Specifically R(rO,rC; ν) can be 
characterized by the finite impedance of the surface. In this work, the finite impedance surface is rep-
resented by a two parameter impedance model3: 

Zground = �c0 (0.434 � e

�
(1+ i)+9.75i� e

�
) (1) 

Taking into account these considerations, the total acoustic field obtained using the IMST is: 

P(r )=H0 (kr)+R(rO, rC;� )H0 (kr´)+ Al
m(Hl

(1)(krm )eil�m +R(rO,rC;� )Hl
(1)(krm´ )e

� il�m´ )
l=��

�

�
m=1

M

�  
 
(2) 

Where M is the total number of the scatterers in the real space. The analytical Insertion Loss (IL) 
spectra for an array of cylinders placed over a soft plane are studied. The characteristics of the consid-
ered system are: 21 rigid cylinders with r=0.055 m arranged in a square array with a=0.069 m and 
with the bottom row placed near to a finite impedance surface with e = 4000 Pa s/m2 and  = 105 
m3. The line source is placed at point O = (0, 0.235) m. The distance between the source and the array 
is d=0.755 m. In Figure 2 we can observe the comparison between measured and calculated the IL in 
three points, with coordinates at (A) (1.203, 0.117) m, (B) (1.203, 0.235) m and (C) (1.203, 0.352) m. 
The agreement between analytical predictions and experimental data are fairly good.  

This model can be applied in several technological applications of PC as for instance in the case of the 
design of acoustic barriers based on arrays of scatterers, where the effect of the excess attenuation 
produced by the reflected wave by the ground has a great influence on the acoustical properties of the 
PC. 
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Figure 2 Measured and predicted Insertion Loss spectra for the three points indicated in the text. 
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Lattice Materials: A Unified Structural Mechanics Perspective
A. Srikantha Phani
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Abstract: Lattice materials with a periodic microstructure are suitable for multifunctional
structures with high specific stiffness, favourable acoustic and thermal properties. Their me-
chanical response under static and dynamic loads is considered from a unified structural me-
chanics perspective combining Bloch wave theory with Finite Element Method.

Lattice materials possess a spatially repetitive unit cell geometry on the length scales of a few millimetres1–5.
Typical applications include sandwich beams, panels and space trusses6. It has been observed that the
unit cell geometry has a profound influence upon their macroscopic mechanical response2 under static and
dynamic loading conditions7. Optimal design of lattice microstructures for wave bearing properties such as
bandgaps have been studied8. Ideas from solid state physics9 have been combined with structural mechanics
principles10,11 and applied to periodic structural systems for aerospace applications. This interdisciplinary
approach has lead to significant insights, most notably the exposition of Anderson localisation phenomena
in macro scale periodic structures12. More recent studies7,13,14 approach lattice and phononic materials in
the spirit of earlier pioneering works in periodic structure theory10,11.

Response/Phenomenon Loading Type Deformation Type Remarks

Passband 7 Dynamic Spatially extended Linear, infinite, perfect lattice material

Stopband (Bandgap) 7 Dynamic Spatially localised Linear, infinite, perfect lattice material

Saint Venant effects 15 Static Spatially localised Linear, finite, perfect lattice material with a
boundary or interface

Rayleigh waves 15 Dynamic Spatially localised Linear, finite, perfect lattice material with a
boundary or interface

Anderson Localisation 12 Dynamic Spatially localised Linear, imperfect lattice material

Discrete Breathers 16,17 Dynamic Spatially localised Nonlinear, perfect lattice material in the weak
coupling limit

Table 1 A classification of mechanical response of lattice materials. Here a perfect lattice material contains no defects such as
cracks, whereas an imperfect lattice material does. Symmetries present in the perfect lattice are perturbed or destroyed in the
imperfect lattice.

A unified structural mechanics perspective on mechanical response of lattice materials viewed as a periodic
network of beams will be presented. Two distinct regimes of mechanical response are identified: in spa-
tially extended response regime the entire lattice can sustain deformation; deformation can be confined to
a spatially localised region due to defects, interfaces, and nonlinearity. A wide range of phenomena can be
incorporated within this perspective as shown in Table 1.
Eigenvalue problems using Bloch theory will serve to unify the spatially localised and spatially extended
deformation phenomena in Table 1 for linear systems. A quadratic eigenvalue problem proposed in an ear-
lier work15 to study elastic boundary layers will be revisited and generalised to include surface waves of
Rayleigh type. Numerical results will be provided for one-dimensional linear nonlinear systems. Interaction
between the defects and nonlinearity will be highlghted.
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Venant type in a Kagome lattice subjected to stretching and shear deformations (right) 15: ρ denotes relative density.
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Phononic Crystals with Applications to Sound and Vibra-
tion Control 
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Abstract: A two dimensional binary locally resonant phononic crystal (PCs) has been fabri-
cated and thoroughly analyzed. A lumped-mass method has been proposed as an efficient tool 
to calculate the band structure of PCs. The concept of PCs is introduced into the design of 
beam and plate structures, and the acoustic materials to improve their vibration and sound per-
formance. 

The propagation of acoustic/elastic waves in periodic composite materials known as phononic crystals 
(PCs) has received considerable attention in recent years. The emphasis is placed on the existence of 
band gaps within which acoustic/elastic waves are all forbidden. Moreover, when point defects or li-
near/planar defects are introduced into perfect PCs, acoustic/elastic waves within band gaps will be 
restricted to the point defects or can only propagate along the linear/planar defects. Such unique prop-
erties of PCs are of great interest in the field of confinement, waveguiding and filtering, as well as the 
area of noise and vibration isolation.  

Since the year 2001, funded by the State Key Development Program for Basic Research of China and 
the National Science Foundation of China, we started research work on PCs and their applications in 
the area of sound and vibration control. Our research interests focused on the band gap formation 
mechanisms, band gap calculation methods and potential applications in vibration and noise reduc-
tion. 

1. Band gap formation mechanism 
A crucial foundational problem involved in the investigations of PCs is to gain a clear understanding 
of the band gap formation mechanisms. Two kinds of mechanisms have been developed: Bragg re-
flection mechanism and locally resonant (LR) mechanism. Resonance gaps formed by the LR mecha-
nism can be tuned to a very low frequency range with a far smaller lattice constant than that governed 
by the Bragg condition.  

A thorough study has been carried out on the Bragg reflection mechanism and we have revealed the 
resonance modes near the edges of the first absolute band gap in a two-dimensional (2D) PC with a 
matrix of epoxy, which lead to a wide band gap. The resonance of the upper band edge is induced by 
Bragg scattering, and the resonance is mainly concentrated in the matrix. The lower edge resonance is 
induced by the joint effects of the Bragg and Mie scattering and presents a rotary resonance mode. 
The gap induced by the rigid-body resonance coalesces with the Bragg gap, so a wider gap comes into 
being.  

The previous LR PCs are all ternary systems, which consist of a cubic array of coated spheres im-
mersed in epoxy or of a lattice of coated cylinders in epoxy (the coatings are thin films of soft rubber). 
In contrast, we fabricate a 2D binary LR PC composed of periodic soft rubber cylinders immersed in 
epoxy host. A comprehensive study has been performed. Numerical simulations predict that subfre-
quency gaps also appear because of the high contrast of mass density and elastic constant of the soft 
rubber. The LR mechanism in forming the subfrequency gaps is thoroughly analyzed.  

Generally, the Bragg reflection mechanism and the locally resonant mechanism focus on the effects of 
the periodic structure and the single unit cell respectively. We have developed a model including 
these two factors simultaneously. Through analysing the elastic wave modes in 2D PCs by MST, the 
uncoupling effects between the differently ordered cylindrical wave components have been identified 
at the edge of the band gaps. For the uncoupled modes of the lowest gap, a simple analytic expression 
is presented, which comprises the Mie scattering of a single unit cell and the effects of the periodic 
structure simultaneously. A comprehensive physical insight into the formation mechanism of the band 
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gaps is provided, no matter the band is derived of Bragg reflection or local resonance. In addition, a 
clear physical understanding of the formation of full band gaps is also proposed.  

2.  Band gap calculation methods 
Several theoretical methods have already been developed for the calculation of band structures of 
PCs. Mostly, the calculations are based on the plane-wave expansion (PWE) method, in which the 
wave equations are solved in Fourier space. Nevertheless, PCs involving media with a large contrast 
in their elastic/density properties are not easy to treat with PWE because a large number of plane 
waves are required to obtain reliable band structures. Other methods such as the variational method 
and the finite difference time domain algorithms overcome the convergence problem in a certain ex-
tent. The multiple scattering theory (MST) has advantages in convergence. However, it can only han-
dle specific arrays of spheres (3D) or cylinders (2D) up to now and complicated mathematical deduc-
tions are always required. 

A lumped-mass method that works in the direct space based on the discretization of continuous sys-
tems has been proposed by us as a new way to compute the band structure of PCs. We conclude that 
the lumped-mass method converges faster and its convergence is insensitive to the sharp variation of 
elastic constants on the interfaces inside the PCs. Especially, the latter advantage is unique in com-
parison with other studies on the improvement of plane-wave expansion methods. Another unique 
feature of the new method is that it needs not deduce the structure factors for every inerratic shape 
thus it can be used to deal with PCs with any unit shapes directly.  

3.  Applications in vibration and noise reduction 
The investigations on PC materials/structures are driven partly by their potential applications such as 
wave filters, vibrationless environments for high-precision systems, transducer design, etc. By intro-
ducing the idea of PCs into the design of engineering structures, such as beams and plates, band gaps 
can be achieved to control the transmission of vibrations. Vibration band gaps in these structures, 
based on either the Bragg reflection mechanism or the locally resonant mechanism, have been found 
theoretically and experimentally. Furthermore, the characteristics of directional propagation of elastic 
waves in 2D PCs within specific pass band frequencies has be studied and utilized to control the di-
rection of the vibration transmission. These studies provide new ideas for the application of PCs in the 
field of structural vibration control. 

The idea of localized resonance in PCs is introduced to improve the low-frequency acoustic absorp-
tion of viscoelasitc materials. Both the theoretical results and the experimental measurements show 
the phenomenon of low-frequency absorption. The outputs of our work may be useful for tailoring the 
acoustic absorption properties and are expected to have applications in underwater acoustic absorption 
materials. 
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Using classical FEM to predict the dynamical response of 
periodic devices in acoustic and vibration applications 
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Abstract: The task of predicting the dynamical response and tailoring wave propagation fil-
ters for practical frequency ranges is here presented. Finite element steady-state analysis is 
performed on periodic devices of finite length considering periodic distribution of materials, 
addition of masses to a tube and periodic curvatures. Validation obtained with prototypes, one 
for attenuation of axial vibration and other for sound propagation, is also mentioned. 

Four periodic devices were studied for passive control of elastic wave propagation. Analytical, numer-
ical and experimental results were obtained to verify and validate the models used. In the first exam-

ple, it is considered the case of the dynami-
cal characterization of the axial harmonic 
response (U) at one end of a multi-laminated 
periodic bar. The bar is excited by an axial 
harmonic force (F) at the other end (see Fig. 
1). Design of such devices can be found in 
literature, see for e.g. in Hussein et al.1. In 
order to have the device working within a 
frequency range of interest, it was recom-
mended to use a periodic sequence of cells 
built from steel and cork agglomerate. The 

main purpose of this material choice was to play with the 
high contrast in the wave propagation speeds. This is done 
to maximize vibration attenuation regions present where 
predictable stop-bands regions are known to exist for the 
case of infinite periodic structures. Experimental results 
confirmed the predicted attenuation regions (for details 
see, Policarpo et al.1). 

The second and third examples are from a similar 
attenuation problem for the flexural vibrations at one end 
of a hollow shaft excited by a transversal force at the other 
end. A straight tube with periodically repeated piecewise 
constant diameter (also seen as added masses) is presented 
in the second problem. For the third case, the tube is defined as a sequence of periodically-repeated 

Figure 1 At the top, distribution of two material components
along the rod. At the bottom, predicted (FEA) and experimen-
tal responses.

Figure 2 At the top, straight hollow tubes with 
periodically repeated diameter or curvature. At
the bottom: harmonic responses from the peri-
odic tubes and from a straight hollow tube of
constant diameter (for the same weight, length 
and internal diameter).
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curvatures (see Fig. 2). Although authors found this parametrization interesting for some pratical 
applications, it was not found in scientific literature. The corresponding frequency response graphics 
illustrate practical improvements of their response in comparison to the equivalent straight hollow 
tube of the same length, weight and internal diameter. For the sake of simplicity, the FE models were 
limited to the elastic bar (i.e., link or rod elements) and to Euler-Bernoulli beams, but in principle the 
algorithms used can be applied to shells and solids as well.  

As a last example, sound transmission through a periodically spaced array of steel cylinders (Fig. 3) 
was also studied for comparison between analytical, numerical and experimental results (obtained in 
an anechoic chamber). It required the building of two classical FE models and a prototype. First, a 
Fluid-Structure Interaction (FSI) modeled by a finite element technique is used to analyze the case of 
a wave propagating in the air through a periodic distribution of cylinders perpendicular to the direc-
tion of the wave propagation. Second, the FSI is deactivated, resulting in a model with only an acous-
tic fluid with fixed holes instead of the cylinders. The experiments confirmed that the prototype exhi-
bits strong sound attenuation bands at the frequencies predicted in literature (Sánchez-Pérez et al. 2).
The effect is considerably well reproduced by means of numerical simulations (in this case, for the 
frequency range of 1250 up to 1750 kHz). Experimental results with the prototype in an anechoic 
chamber confirmed the predicted attenuation. 

In conclusion, the use of 
classical finite elements 
with harmonic (steady-state) 
analysis allowed to correct-
ly predict the behavior of 
these simple devices. Al-
though frequencies were not 
very low, the frequency 
ranges were considered of 
interest for engineering ap-
plications. The results 
showed a good correlation 
with the predictions of the 
corresponding Bloch wave 
analysis, as long as the 

number of finite elements used per wavelength is adequate. Simple finite element meshes were used. 
Experimental tests performed at axial vibration devices and at the set of parallel cylinders shown good 
correlation with the numerical predictions. It is expected that these contributions can make it easier 
for engineers to understand and to use the advantages of the actual phononics knowledge. 
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Figure 3 Left: A photo of the experimental device built from a periodically spaced
array of metallic cylinder elements in air. Right: A plot of the air pressure distribution
predicted from the harmonic FE analysis considering a plane wave at the entry and
anechoic boundary condition at the exit.
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Dynamical effective properties of elastic multilayers 
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Abstract: Based on the state-vector formalism, a material with the Willis type of constitutive 
relations is recovered as the model of an homogeneous dispersive effective medium that emu-
lates periodic multilayered or graded materials. The effective material constants are defined 
through the actual physical parameters in the form, which is not, in principle, restricted to low 
frequency and which can reveal both the dispersion and the stopbands. Some examples for the 
out-of-plane case are provided. 

 

The state-vector formalism and the wave number matrix K 
The state-vector formalism is well-suited for describing elastic waves in anisotropic 1D-
heterogeneous media with density  and stiffness tensor . Consider quasi-plane modes 
with the phase factor , where  is the frequency and xk  the wavenumber in an arbi-
trarily chosen direction X  orthogonal to Y . Taking the Fourier transforms of the equilibrium 
( ,ij i j ) and stress–strain ( ij ) equations in all variables except y  leads to an ordinary 
differential system for the state vector : 
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where  and  denote the unit vectors parallel to  and Y , and ( ) ,  m n X jk i ijkl lnn n c n= ( )jknm =
( )kji ijkl ln c m mn= , ( )jk i ijkl lmm mc m= . Given the initial condition at some , the solution to 

system (1) is 
(0 0y ≡ )

( ) ( ) ( ), 0 0y y=Mη η , where  is the  matricant evaluated by the product of 
the matrix exponentials of the homogeneous layers or more generally by the Peano series in case of a 
graded material

( ), 0yM 6 6×

1. 
Now let , ijklc  and hence  depend on y  periodically with a period T . In this case the central role 
is played by the matricant  over the unit cell 

ρ Q
( ), 0TM [ ]0,T  which is called the monodromy matrix. 

For instance, ( ) 1, 0 e j jdj
nT == ∏ QM  for a piecewise homogeneous (layered) medium. The wavenumber 

matrix  is introduced by denoting K ( ) ( ), 0 exp iT T=M K  whence ( )1i ln ,T T 0M=K . For relatively 
low frequency, it can be evaluated as ( )

1i m
m
∞
== +ΣK Q Ki  where ⋅  denotes the average over a pe-

riod and  are the matrix coefficients of the Magnus expansion of matrix logarithm (  is thereby 
defined in the first Brillouin zone that corresponds to the zeroth Riemann sheet of ln  with a cut 

). 

( )mK K
z

argz π= ±
Dynamic homogenization and constitutive equations 
Formally,  is a solution to equation (1) with the actual matrix of coefficients  replaced 
by the constant matrix . This motivates the concept of an effective homogeneous medium, whose 
material model admits the wave equation in the form (1) with a constant system matrix . 
Dynamic properties are realized by taking  beyond the zero-order term 

( )exp i yK ( )yQ
iK

ieff ≡Q K
= ieffQ K Q  that describes 

the quasi-static limit only. It turns out2 that the dispersive density matrix  and elastic tensor  
of the effective medium must be complemented by a stress-impulse coupling that leads to the motion 
and constitutive equations in the Willis form: 

( )effρ ( )eff
ijklc

                 ,                 ,                 , (2) ,ij i jpσ = ( )eff
ij ijkl kl ijr rc e S uσ = + ( )eff

q klq kl qr rp S e uρ= +

where  is the vector of momentum density, and  is the Willis coupling tensorp ijk jikS S= 4. The effec-
tive material constants ,  and  can be expressed via the actual material proper-
ties  and . 

( )( )eff
ijklc ω ( )ijrS ω ( )( )eff

qrρ ω
( )ijklc y ( )yρ
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u

Examples for the case of SH waves in a periodically bilayered medium 
We illustrate the general formulation by considering SH waves propagating in a periodic structure of 
isotropic unit cells. In this case, the out-of-plane effective constitutive relations are as follows: 

         ,         ,         . (3) ( ) ( )
,1 ,213 55 54

eff effc u c uσ = + ( ) ( )
,1 ,223 45 44 43

eff effc u c u S uσ = + + ( )
,23 43

effp S u ρ= +

If the unit cell consists of two homogeneous isotropic layers, then the effective material parameters 
involved in (3) can be found beyond the low-frequency range in an exact form of transcendental func-
tions of unrestricted  and , see Ref. 2. Figure 1 shows these effective parameters computed for 
the normal propagation ( ) through the periodic stack of layers 

ω xk
0xk = 1,2j =  of equal thickness 

( 1
2jd = ) with 1 , 1  and 2 , 2 , where 1ρ = 1c = 2ρ = 2c = /i i ic  is the shear wave speed. The 

vanishing of both  and  at the band edge at  is expected on the basis of the fact 
that  is singular at the band edge and scales as (  near it

μ ρ=
( )
44
effc ( )effρ 1 2.6ω ω= ≈

effQ ) 1/2
1ω ω −− 3. The square root decay of 

both  and  is apparent in figure 1. ( )
44
effc ( )effρ

As an example of the type of boundary problem that can be solved using the effective medium equa-
tions, consider reflection–transmission of SH waves at a bonded interface  between the half-
space of the periodically stratified medium ( ) and a uniform half-space ( ) of isotropic 
material with 0  and 

0y =
0y > 0y <

ρ 0 0 0c . An SH wave is incident from the uniform half-space with 
propagation direction at angle  from the interface normal. The total solution is taken as  

/μ ρ=
θ ( ),u x y

( )i -ii yx k y k yk xe e Re= + y  for  and  for , with ( )  0y ≤ ( ) ( )i ,i, xx K k yk xu x y Te e ω= 0y ≥ ,x yk k =
( )0/ sin , coscω θ θ

) ) θ
)Sω

. Taking into account the continuity conditions for displacement and traction at 
 yields the reflection and transmission coefficients  and  in the standard form R  

 and , where 0 0  is the impedance in the 
uniform half-space and  is the impedance for the effective medium 
equivalent to the periodic half-space. It is noteworthy that the effective impedance Z+  is identical to 
the impedance of the actual periodic material because they both imply a ratio of components of the 
outgoing eigenvector that is common for 

0y = R T =
( ) (/Z Z Z Z− + − +− + (2 /T Z Z Z− − += + cosZ cρ− =

( ) ( )(1 44 45 43
eff eff

xZ Kc k cω−
+ = + −

( ), 0TM  and . Thus the above solution for the reflection 
and transmission coefficients, which is expressed via the effective material parameters, is an exact 
result. Figure 2 shows its calculation for the case of normal incidence. 

K

  
Figure 1 The effective material constants of Eq. (2) at 
x  (elastic in blue, inertial in black) for the periodi-

cally bilayered medium (see its parameters in the text). The 
vertical wavenumber is added (in red). The frequency range 
includes the first band edge which is at the frequency where 

 first occurs. Only the real parts of the quantities 
indicated are plotted (for  in the stopband the imaginary 
parts of ,  and  are non-zero but not shown). 

0k =

ReK π=
ω

( )

44

effc ( )effρ K

Figure 2 The magnitude of the reflection and transmission 
coefficients ( )R ω  and ( )T ω  for normal incidence 
(  or ) from a uniform half-space with 
0 , 0  on a periodically bilayered structure which 

was used in figure 1. As expected, 

0θ = 0xk =
1ρ = 1c =

1R ≤  with total reflec-
tion in the stopband. 

References 
1 M. C. Pease-III, Methods of matrix algebra, Academic Press, New-York, NY (1965). 
2 A. L. Shuvalov, A. A. Kutsenko, A. N. Norris, and O. Poncelet, Proc. R. Soc. A, doi:10.1098/rspa.2010.0389 (2011). 
3 A. L. Shuvalov, A. A. Kutsenko, and A. N. Norris, Wave Motion 47, 370–382 (2010). 
4 G. W. Milton, and J. R. Willis, Proc. R. Soc. A 463, 855–880 (2007). 

Phononics 2011: First International Conference on Phononic Crystals, Metamaterials and Optomechanics
Santa Fe, New Mexico, USA, May 29-June 2, 2011

PHONONICS-2011-0123

2



186

Track 3: Periodic Structures	 Phononics 2011
 

Phononics 2011: First International Conference on Phononic Crystals, Metamaterials and Optomechanics 

Santa Fe, New Mexico, USA, May 29-June 2, 2010 

PHONONICS-2011-XXXXX 

 

Structurally-Inspired Phononic Metamaterials 
Gregory M. Hulbert1 , Julien Meaud1, Zheng-Dong Ma1 
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Abstract: The distinction between materials and structures has blurred. The development of 
phononic metamaterials based upon novel structural systems is considered in this work. In 
particular, a Negative-Poisson Ratio (NPR) structure is used as the foundation for developing 
phononic metamaterials comprising a ‘structural’ framework of stiff material and a more 
compliant material that can dissipate energy.  

 

The distinction between materials and structures, has, in the past decade, become blurry. In a recent 
publication1 that received some publicity, the discovery of ice crystals on the moons of Saturn and 
Neptune exhibit negative linear compressibility, also known as Negative-Poisson Ratio (NPR) re-
sponse and negative thermal expansion.  The underlying molecular structure shown resembles me-
chanism-like topologies. In the context of phononics, dispersive behavior exhibited by materials2-4 
motivated the development of structurally-based systems with the ability to mitigate energy propaga-
tion through structures5-7.  

Inspired by the progess in phononic metamaterials and the applications of NPR materials8, we recent-
ly began investigating the development of phononic metamaterials based upon novel structural sys-
tems. In particular, a Negative-Poisson Ratio (NPR) structure is used as the foundation for developing 
phononic metamaterials comprising a ‘structural’ framework of stiff material and a more compliant 
material that can dissipate energy. The goal of this work is to model, analyze and design NPR struc-
tures at different length scales with an aim towards creating structurally-based materials, which can be 
manufactured practically at the sub-millimeter scale. 

 

Figures 1 and 2 depict two baseline structural topologies that exhibit significantly different effective 
Poisson ratios. The configuration of Figure 1 has an effective Poisson ratio of -0.8 while that of Figure 
2 is -7.5. The loading direction is considered as vertical with the effective response measured lateral-
ly. Figure 3 shows one of the baseline topologies, including the void space filled with a soft, polymer 
fill. 

 

 

 Figure 1 NPR structural configuration  
with  = -0.8 

Figure 2 NPR structural configuration  
with  = -7.5 
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The dynamic response of the NPR-based material/structural concepts is computed using a unit cell 
analysis for both the void and polymer filled architectures. The effective performance of these con-
cepts is assessed for energy attenuation across frequency bases, with consideration of different cell 
sizes associated with a structural-sized unit cell and with a unit cell size on the millimeter or smaller 
scale. 
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Figure 3 NPR structural configuration  
with polymer fill 
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Longitudinal Vibration Band Gaps in Rods with Periodically 
Attached Multi-Degree-of-Freedom Vibration Absorbers 

Yong Xiao, Jihong Wen, Xisen Wen 
Institute of Mechatronical Engineering, and Key Laboratory of Photonic and Phononic Crystals of Ministry of Edu-

cation, National University of Defense Technology, Changsha 410073, China 
xiaoyong.nudt@gmail.com  

 
Abstract: Band gap behavior in rods with periodically mounted multi-degree-of-freedom resona-
tors (vibration absorbers) is concerned. Explicit expressions are derived for the calculation of 
complex band structures. The effects of absorber parameters on the band gap properties are stu-
died. The band gap formation mechanisms of the system are explained by analytical models with 
explicit formulations.  

Band gap characteristics of uniform rods with periodically attached multi-degree-of-freedom (MDOF) 
resonators (or call “vibration absorbers” in the context of mechanical engineering) are investigated. The 
system considered is sketched in Figure 1.  

 

 

 

 

Using the well-known transfer matrix method, explicit formulation is derived for the calculation of com-
plex band structures of the system 

cosh( ) cos( ) ( 2)sin( )L D L      (1) 

where is the so-called propagation constant [1, 2], is the wavenumber for the longitudinal waves in 
the rods, D is the non-dimensional dynamic stiffness of the absorber. Generally, the band gap behaviour 
can be well represented by the attenuation constant, Re( ) , which can be mathematically described by a 
multivariable function as 

 0 1 1 2 2Re( ) ( , , , , , , , , , ,...) Re acosh[cos( ) ( 2)sin( )]f E A L m k m k m L D L        (2) 

It is demonstrated that both Bragg-type and resonance-type band gaps co-exist in the system. Multiple 
desired resonance gaps can be achieved due to the multiple natural frequencies of the MDOF absorbers. 
This is different from the case of single-degree-of-freedom (SDOF) absorber attachments, which pro-
duces only one tunable resonance band gap.  

The effects of absorber parameters on the band gap behaviour are studied by employing the so-called “at-
tenuation constant surface (ACF)”, as first introduced in Ref.[3]. For example, the parametric influence 
analysis for locally resonant rods with 2DOF absorbers can be performed by employing the following bi-
variable function 

… … … 

L 

cell n+1 cell n 

m1 m2 mN 

k1 k2 kN 

Figure 1 An infinite uniform rod with periodically attached MDOF vibration absorbers. 
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1 1,min 1,max1 ( , )Re( ) ( , ) |k k kf k    (3) 

For convenience, the spring stiffness can be nondimensionalized as 1 1K ( )k EA L , and a nondimen-
sional frequency can be defined as L   . Two numerical examples of ACF defined by Equation (3) 
are shown in Figure 2. In the first example, the resonance frequencies of the absorber, i.e. 1 and 2 , are 
both tuned to well below the first Bragg condition, thus two low frequency resonance gaps around these 
frequencies can be achieved. In the second example, the first absorber frequency is set below the first 
Bragg condition, while the second one it tuned to be equal to the Bragg condition (i.e., 2 1  ). It can be 

seen band gap coupling phenomenon occurs in this case, giving rise to a super-wide coupled band gap. 
Such a unique property can be utilized in the broadband control of wave propagation in rods. According 
to the ACS plots depicted in Figure 2, the width of the band gaps can be adjusted by varying the design-
ing parameter 1k .  

Finally, in order to explain the band gap behaviour of the system, both rigorous derivations and physical 
models are provided to understand the band gap formation mechanisms. Exact expressions are obtained to 
predict all the band edge frequencies as well as the band gap coupling conditions directly, without the 
calculation of band gaps.  

 
 References 
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Figure 2 Attenuation constant surfaces of locally resonant rods with 2DOF absorbers. (a) 1 0.2  , 2 0.4  ; (b) 

1 0.5  , 2 1  . The mass ratio of the absorbers is fixed to be 0.5  . 
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Intensity-Dependent Dispersion in Nonlinear Phononic 
and Photonic Layered Systems 

Kevin L. Manktelow1 , Michael Leamy1, Massimo Ruzzene1 
1 George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology,  

771 Ferst Drive N.W. Atlanta, GA 30332, USA,  
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Abstract: Intensity-dependent dispersion relationships of nonlinear phononic and photonic 
layered systems are produced.  Analysis techniques common in optics are applied to phononic 
systems, and a recently introduced perturbation approach for discrete phononic systems is ap-
plied to optical systems after a finite element discretization.  The results are validated with 
numerical simulation and show that both approaches may be beneficial for system analysis. 

Structures with periodically varying geometry and material properties are known to exhibit advanta-
geous wave propagation properties such as negative refractive indices, frequency band gaps and spa-
tial beaming. Periodic layering of materials with differing mass and stiffness properties produces pho-
nonic crystals, which tailor elastic and acoustic wave propagation.  The optical analogue of phononic 
crystals is the photonic crystal which is typically formed by periodic layering of materials with alter-
nating permittivity. 

Phononic and photonic crystals are typically considered to operate in regimes where a linear constitu-
tive relationship (e.g., stress-strain) provides an adequate representation.  For high intensity wave 
propagation, however, weak nonlinearities can affect performance.  For example, a cubic nonlinearity 
gives rise to frequency shifting and thus a shift in band gap location.  In the study of nonlinear optics, 
a cubic term has been treated using a quasi-linear constitutive relationship with intensity dependent 
properties.  This nonlinearity is known as the Kerr nonlinearity and gives rise to a refractive index 
proportional to intensity.  This technique is explored herein for generating nonlinear dispersion rela-
tionships for the elastic case.  In addition, a perturbation method developed previously for discrete 
elastic systems, used in conjunction with a finite element discretization, is proposed as an alternative 
dispersion analysis tool in both photonic and phononic systems. 

One of the simplest phononic or photonic crystals is a one-dimensional bilayered material, consisting 
of alternating material layers with contrasting properties.  This type of structure exhibits many of the 
interesting properties of more complex photonic or phononic crystals such as non-trivial dispersion 
and band gaps.  Phononic and photonic systems with linear constitutive relationships are governed by 
the same one-dimensional wave equation.  The nonlinear constitutive laws typically employed for 
phononic and photonic systems result in different nonlinear terms in the fully nonlinear wave equa-
tions.   

When nonlinearities are excluded from the analysis, an analytical dispersion relation may be obtained 
succinctly using the transfer matrix method. The transfer matrix method is also applicable to the non-
linear bilayered rod when quasi-linear intensity-dependent material properties replace the full nonli-
near model.  In this work, the bilayered material system is first discretized using a Galerkin weighted-
residuals approach.  The discretized system is then analyzed with (1) a linear stress-strain relationship, 
(2) a quasi-linear stress-strain relationship and the transfer matrix approach, and (3) a perturbation 
analysis of the fully nonlinear governing equations. The perturbation approach results in fundamental-
ly different band gap structure in some cases and predicts a frequency shift which is less than that es-
timated by the quasi-linear transfer matrix approach.   
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Figure 1. Dispersion band structure for (a) Phononic layered material, and (b) Photonic layered material 
at relatively large nonlinearities.  Dispersion curves are drawn for systems with linear material properties 
(light-gray dashed), quasi-linear material properties applied using the transfer matrix method (solid dark 
gray), and fully nonlinear material properties analyzed using finite element discretization and perturbation 
analysis (solid black).  Black markers indicate the results of transient finite element simulations. 

Numerical simulations using the fully nonlinear finite element equations are included for validation of 
the predicted dispersion curves.  Numerical simulations are performed using the discretized model 
over a domain large enough to be considered infinite.  The resulting space-time data is analyzed using 
a two-dimensional discrete Fourier transform to obtain wavenumber/frequency data points.  The re-
sults show good agreement with the perturbation approach, and indicate that it may provide a simple 
and accurate framework for the design and optimization of nonlinear phononic and photonic band 
gaps. 
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








  
  

    

  


 

 
 


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           

      



     
 



Phononics 2011: First International Conference on Phononic Crystals, Metamaterials and Optomechanics
Santa Fe, New Mexico, USA, May 29-June 2, 2011

PHONONICS-2011-0177

1



193

Phononics 2011 	 Track 3: Periodic Structures







 
  

 
                



   
   

       
       
       
 

      
      


 
      

    


     
     
    
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