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Abstract: In this paper, we briefly review the recent advances made worldwide to control the 
propagation of elastic waves using phononic crystals (PCs). We show how new effects, including 
the opening of band gaps in silicon PC plates and the negative refraction of elastic waves, could be 
at the origin of new Micro ElectroMechanical Systems compatible with CMOS processes. 

The most attractive property that can be achieved in a phononic crystal (PC) is the existence of frequency 
bands in which no acoustic waves are allowed to propagate. It is thus not surprising that, since more than 
twenty years, a great deal of work has been devoted to the computation of the band structures of a large 
variety of PCs, including solid/fluid and solid/solid heterostructures. The research in this field has now 
reached maturity and several devices based upon the intrinsic properties of PCs have been proposed 
already, some of which being of primary interest for communication technologies (filters, waveguides, 
resonators, (de)multiplexers, signal processing devices…) or more generally, for manipulating the 
propagation or the focusing of elastic waves (gradient index PCs, acoustical super-lenses…). This paper 
presents an overview of recent works on the topics. We mostly, but not exclusively, stress on recent 
advances made with PCs inserted within slabs or membranes which have the important advantage of 
confining the elastic energy in the thickness of the device, yielding therefore to low loss structures. 

The first experimental demonstration1,2 of stop bands in 2D PC goes back to the early 70’s but it is only 
recently that PCs in silicon plates, compatible with CMOS process, have been achieved at high 
frequencies. For instance, a decreasing in the transmission by almost 40 dB was measured in a PC 
designed to stop all plate modes in the band 120-150 MHz and elaborated3 from a silicon-on-insulator 
substrate. Rejection of bulk acoustic waves by 25 dB was also measured in the MHz regime with PCs 
made of tungsten rods embedded into a silica matrix.4 In both cases these stop bands resulted from the 
Bragg reflection on the inclusions. Actually, other processes can be exploited as well to achieve a large 
decrease in the transmission through the heterostructure, at specific frequencies. Indeed, it has been 
shown5 that a very selective filter is obtained when a resonant cavity is attached to a waveguide arranged 
within a 2D PC. In that case, the dip in the transmission spectrum does not result from the coherent 
scattering of the waves but rather from the trapping of elastic energy in the cavity. However, up to now 
the experimental demonstrations have been limited to structures with fluid background, not really useable 
for RF applications. 

Almost the same idea is at work in the case of PCs made of periodic array of dots on a membrane. These 
structures have at least two features being of primary usefulness for MEMS devices: first, not 
surprisingly, they exhibit band gaps due to Bragg reflection on the dots but also, more unexpectedly, they 
feature flat bands at frequencies that could be well below the Bragg gap. These low frequency gaps 
originate from the confinement of elastic energy on the dots and are therefore very sensitive to their 
geometrical and physical parameters. Secondly, the elaboration of this new type of phononic plates is 
compatible with CMOS processes, making these heterostructures very promising in a large field of 
applications (sensing, wireless communication, thermal transport…) and consequently, widely 
investigated worldwide.6-10 
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With the rapid growing of information and communication technologies there is an urgent need in 
frequency selective devices working in the GHz range. Various micromechanical 2D resonators showing 
Q-factor as high as 310x6  have been proposed to this end.11 In particular, a silicon-chip-based cavity, 
allowing for the simultaneous confinement of mechanical and optical modes, has recently been used12 to 
successfully couple 2 GHz phonons and light at telecom wavelength (1.5 µm). 

The optical approach has inspired a lot of works devoted to the bending, focusing, or collimation of 
elastic waves at both micro- (MHz) and nano-scales (GHz). Particularly interesting is a flat gradient-index 
PC lens13 that has been designed to focus bulk elastic waves at wavelengths much larger than the lattice 
parameter. This could be achieved by modulating either the radii or the physical nature of the cylindrical 
inclusions, along the direction normal to the wave vector. It has also been shown by our group that, as a 
consequence of the folding of some branches in the dispersion curves, both SAW14 and Lamb waves15 can 
undergo negative refraction when going across the interface between a PC and a homogeneous medium. 
Identical properties could be achieved with locally resonant materials16 as well, but in this latter case, the 
phenomenon results from mass density and compressibility both negative rather than from dispersion. 
Note that most of the investigations in that field are still prospective but they could eventually lead to very 
interesting devices, as super-lenses, suitable to overcome the diffraction limit when focusing an ultrasonic 
beam. 

In summary, an abundant literature covers now many aspects of PCs as a basis to micromechanical, or 
microelectronic devices. In this talk, we will try to identify which of them are the most promising. 
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Abstract: A method based on the Dirichlet-to-Neumann map which relates the potential func-
tion to its derivatives on the boundary of the unit cell is presented for the phononic band gap 
calculation with solids stuffing in a fluid. The transverse mode existing in the solid stuffing is 
considered. The band structures along the irreducible Brillouin zone are calculated. The results 
show that the method can yield accurate results with fast convergence.  

Since the pioneer work of Kushwaha [1], a great deal of attention has been focused on special proper-
ties of the so-called phononic crystals [1-11] which are the artificial periodic elastic materials with the 
structures analogy to traditional natural crystals and photonic crystals. A physical character of these 
materials is the existence of phononic band gaps in which the sound or elastic waves are forbidden.  

To calculate the band gaps for phononic crystals, several numerical methods have been devel-
oped, such as the plane wave expansion (PWE) method [1-6], the multiple scattering theory (MST) 
method [7, 8], and the finite difference time domain (FDTD) method [9, 10]. Among them, the PWE 
method is the most popular one because of its simplicity. For the systems with solid stuffing in a fluid, 
PWE method has to neglect the transverse mode existing in solid stuffing and simply treat the solid as 
an artificial “fluid”. This approximation can yield accurate results only when the solid component is 
so stiff that the wave propagating in the surrounding fluid can hardly be transmitted into the solid. Up 
to now, there are few efficient numerical methods for calculating the band structures of the mixed sys-
tem with solid and fluid components [11]. 

In this paper, a method based on the Dirichlet-to-Neumann (DtN) map [12] which relates the po-
tential function to its derivatives on the boundary of the unit cell is presented for the band gap calcula-
tion of the phononic crystals with solid stuffing in a fluid. The boundary conditions between the solid 
stuffing and the fluid host as well as the transverse mode existing in the solid stuffing are considered. 
This method expresses the scattered fields as the cylindrical wave expansions and imposes the Bloch 
condition on the boundary of the unit cell. A linear eigenvalue equation is obtained. For a given fre-
quency, the Bloch wave vectors along the irreducible Brillouin zone are calculated. This method is 
applied to analyze the band gaps of two-dimensional solid-fluid phononic crystals with a square lat-
tice. The results show that the method can yield accurate results with fast convergence for various 
material combinations, including the case with soft stuffing.  

As an example, a square lattice of aluminium (Al) cylinders in a mercury host with filling frac-
tion 0.4f   is considered. The material properties are 3

1 2700 /kg m   and 1 6410 /Lc m s  for Al, 
and 3

2 13600 /kg m   and 2 1451 /Lc m s  for mercury. The normalized frequencies  are calculated 
by both PWE and DtN-based methods, see Fig. 1 For the PWE method the solid stuffing is considered 
as a fluid but with the material parameters of actual Al. In the figure, the black circular dots represent 
the band structures obtained from the DtN-based method, and the gray triangular dots from the PWE 
method. Obviously, no matter which method we use to calculate, there is no complete band gap for Al 
cylinders in a mercury host with the filling fraction 0.4f  . The frequency bands calculated by two 
methods are similar, but those from DtN-based method are lower than those from PWE method. That 
is to say, neglecting the transverse mode in solid sactterers will induce an higher estimate of the ei-
genfrequencies.  
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Figure 1 The dispersion curves of Al cylinders in mercury in a square lattice with 0.4f  . The black circular dots represent 
the band gaps from the DtN-based method, and the gray triangular dots from the PWE method. 
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Abstract: Negative refraction of elastic waves is evidenced in a two-dimensional phononic crys-
tal (PC), made of a triangular lattice of steel rods embedded in epoxy. Experiments are carried out 
on a prism shaped PC inserted inside an epoxy block. The influence of different parameters is 
discussed in terms of image reconstruction.    

 
    Phononic crystals (PC's) may exhibit dispersion curves with a negative slope i.e. the wave vector and 
the group velocity vector associated with an acoustic wave point in opposite directions. This property is 
typical of a left handed material and implies a negative index of refraction in the Snell-Descartes law. 
Negative index PC’s have the advantage of allowing the realization of flat super-lenses able to focus elas-
tic waves with a resolution lower than the diffraction limit [1]. It has been shown that super-resolution can 
be achieved using a PC lens made of a triangular array of steel cylinders immersed in methanol and sur-
rounded with water [2]. To go further for practical applications, it is more appropriate to consider a PC 
slab made with a solid matrix. In that case, longitudinal and transverse waves are coupled together in the 
PC, which makes the problem more complex.  

In a recent paper, C. Croënne et al [3] have shown theoretically and experimentally the negative refrac-
tion of an elastic wave in a triangular array of steel rods in an epoxy block. The dispersion curves are pre-
sented in the first Brillouin zone and show that in the upper part, a branch with a negative slope is ob-
served (Fig. 1). It corresponds to a mode with a predominantly longitudinal behavior. Moreover, the Equi-
Frequency Contours (EFC), i.e. the intersection of the 3D dispersion curves with a horizontal plane, are 
circular: it means that the wavevector of the elastic wave and the group velocity are antiparallel, for any 
propagation direction (Fig. 2). As expected, the radius of the EFC clearly decreases as the frequency in-
creases. Experiments have confirmed the theoretical simulations obtained using the finite element me-
thod. They are carried out on a prism shaped PC inserted inside an epoxy block. Measurement of the re-
fraction angle at the output side of the PC shows the negative refraction of transverse or longitudinal 
waves through a solid PC.  In the present paper, we analyze in details the elastic waves inducing a nega-
tive refraction. However, in the studied device, the refraction index of the PC is not matched with the re-
fraction index of water, for immersed applications. Therefore, solutions are presented to match the refrac-
tive index of the PC with respect to the surrounding fluid. Finally, the occurrence of the focal spot is dis-
cussed (Fig. 3 and 4) and it is shown that many parameters are of interest in the construction of the focal 
spot: negative slope in the dispersion curve, the Equi Frequency Contours, index matching as well as im-
pedance matching.  

This work is supported by the Agence Nationale de la Recherche : ANR-08-BLAN-0101-01, SUPREME 
project. 

 

 
   

Phononics 2011: First International Conference on Phononic Crystals, Metamaterials and Optomechanics
Santa Fe, New Mexico, USA, May 29-June 2, 2011

PHONONICS-2011-0056

1



61

Phononics 2011 	 Track 1: Phononic Crystals
 

Phononics 2011: First International Conference on Phononic Crystals, Metamaterials and Optomechanics 

Sharm El-Sheikh, Egypt, May 29-June 2, 2010 

PHONONICS-2011-XXXXX 

 

2 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
References 
1 A. Sukhovich, L.J. Jing, J.H. Page, Phys. Rev. B 77, 014301 (2008). 
2 A. Sukhovich, B. Merheb, K. Muralidharan, J. O. Vasseur, Y. Pennec, P. A. Deymier and J. H. Page, Phys. Rev. Lett. 102, 
154301 (2009). 
3 C . Croënne, D. Manga, B. Morvan, A. Tinel, B. Dubus, J. Vasseur and A.-C. Hladky-Hennion, to be published in Phys. Rev. B, 
(2011). 
 

Figure 2:  Equi Frequency Contours of the PC at 780 kHz 
(thick line) and 820 kHz (thin line). 

Figure 1: (a) Elastic band structure for the 2D PC made of a triangular 
array of steel rods in an epoxy matrix. The radius of the rods is 1 mm, the 
lattice parameter is 2.84 mm. In the frequency range [750 kHz, 860 kHz] 
(grey part) a negative branch is observed, corresponding to a mode with a 
predominantly longitudinal behaviour. 
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Figure 3: Simulated pressure field (normalized to a source amplitude 
of 1) for a PC-made flat lens immersed in a fluid, at 786 kHz. Fluid 
refractive index is matched to PC index. A point source is located 
below the lens, 3-mm away from the bottom interface. For clarity, the 
colorscale is cut to ±0.2 and thus some parts of the field map below 
the lens are out of colorscale (black/white regions). Losses are not 
taken into account. 

 

Figure 4: Plot of the pressure field amplitude (a) along the 
line perpendicular to the slab which includes the source point 
and (b) along the line parallel to the slab which includes the 
focal point, for the simulation of Fig. 3. Here the focal point is 
defined as the point of maximum amplitude on plot (a) (indi-
cated by an arrow). On graph (a), the PC slab is situated be-
tween the two dashed lines 
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Abstract: We report on our theoretical works about the engineering of band structures in  
phononic as well as dual phononic-photonic slabs and strips waveguides. Besides the conven-
tional structure made of a periodic array of holes in a plate, we discuss the more recent        
geometry of pillars on a membrane or on a substrate. We discuss the best phoxonic structures 
displaying dual phononic-photonic band gaps and slow modes.   

Following a great deal of works devoted to 2D phononic crystals [1] and their point and linear defects 
[2], the study of slabs of phononic crystals has become a topic of major interest during the last few 
years. Indeed, with an appropriate choice of their geometrical and physical parameters, these finite 
thickness structures can also exhibit absolute band gaps, similarly to the case of 2D structures. This 
makes them suitable to support the same confinement, guiding and filtering functionalities as in 2D 
phononic crystals, with the additional property of confinement in the vertical direction.  

We have studied two types of phononic crystal slabs, namely the conventional case of a periodic array 
of holes in a plate such as silicon [3], and the new case of a periodic array of pillars on a membrane 
[4-7] (such as Si/SiO2). We introduced the latter structure in 2008 especially because it can exhibit a 
low frequency gap, where the acoustic wavelength in any constituent material is several times larger 
than the period [4]. This gap is associated with a bending of the first three acoustic branches; its exis-
tence requires appropriate geometrical parameters, especially as concerns the thickness of the mem-
brane and the height of the pillars whereas it remains robust against the choice of the constituting ma-
terials. One or more higher gaps can also appear in the band structure depending on the height of the 
pillars [4,5]. In particular, associated with the local resonances of the pillars, there are opening of gaps 
due to the bending of the acoustic branches (when they cut a local resonance) instead of their folding. 
Among different considered lattices, the triangular lattice provides better flexibility than the square 
and honeycomb lattices as concerns the choice of the geometrical parameters [5]. This is in contrast to 
the case of holes in a membrane where the honeycomb lattice provides the largest band gaps. When 
the thickness of the membrane increases, the absolute gap closes and one progressively recovers the 
case of pillars deposited on a semi-infinite substrate. Then, the band structure displays one or several 
surface localized branches below the bulk bands of the substrate.  

We have studied the waveguiding phenomena in the above phononic crystals, especially in the case of 
pillars on a membrane [6]. Different types of linear defects are considered either by removing a row of 
pillars or by replacing in a row the materials or geometrical parameters of the pillars. In each case, we 
have made a detailed analysis of the confined modes, the transmitting or non-transmitting character of 
the corresponding bands, and the possibility of polarization conversion which could frequently occur.  

Phonon transmission between two substrates connected by a periodic array of pillars has also been 
studied [7]. In particular, we have evidenced the existence of Fano resonances when a Perot-Fabry 
resonance inside a pillar falls in the vicinity of a zero of transmission; the latter results from the exci-
tation by the normally incident wave of surface waves at the boundaries between the substrates and 
the pillars [7]. This and other features in the transmission spectrum, such as the regular oscillations 
associated with Fabry-Perot resonances inside the pillars or the existence of transmission gaps associ-
ated to the periodicity, are also discussed as a function of the geometrical and material parameters. 

In a second part, we discuss the simultaneous existence of phononic and photonic band gaps in the 
above crystal slabs [5, 8], considering different lattices such as square triangular and honeycomb, as 
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well as the more general case of boron nitride (BN) lattices. With a periodic array of holes in a Si 
membrane [8], complete phoxonic band gaps can be obtained with the honeycomb lattice as well as 
with BN lattices close to honeycomb. Otherwise, all investigated structures present the possibility of a 
complete phononic gap together with a photonic gap of a given symmetry, either odd or even, depend-
ing on the geometrical parameters. With a periodic array of Si dots on a SiO2 membrane [5], an ap-
propriate choice of the geometrical parameters allows the existence of an absolute phoxonic gap. In 
contrast to the case of holes in a membrane, the more flexible lattice to keep the phononic gap open is 
now the triangular one, especially as concerns the thickness of the membrane. Moreover, this geome-
try allows the existence of the complete photonic gap over a wide range of parameters.  
Let us mention a new idea [9] to create a complete photonic band gap by taking advantage of the ani-
sotropy of the dielectric tensor (different refraction indices for the propagation of TE and TM modes).   

Confined modes associated with defects such as waveguides and cavities in these structures will be 
useful for novel acousto-optic and sensing devices. In this work, we study the design of different 
waveguides that allow phononic and photonic dual guidance and confinement, especially with the 
possibility of single mode slow light and/or sound. Several structures are considered, among them one 
is obtained in a honeycomb lattice by cutting the crystal along the K direction and by pushing the 
two half-crystals far from each other. In this way, the width of the waveguide can be taken as a pa-
rameter. Moreover, additional holes of different sizes are introduced on the sides of the waveguide. 

As an alternative to the waveguides in a crystal slab, we also study 1D periodic waveguides consti-
tuted by making a nano-structuration in a suspended silicon strip waveguide One example is consti-
tuted by a 1D waveguide in which the sides are periodically rough. A similar case is obtained when 
periodical stubs are attached on both sides of the waveguide. We demonstrate the possibility of pho-
nonic and photonic dual band gaps in these structures and are investigating the designs of cavities that 
insure the confinement of both waves.   

Finally, we would like to mention a calculation about the thermal transport in the frame of the above 
geometries. Namely, by using a lattice dynamic model, we have studied the directional thermal con-
ductivity  of a thin Si membrane covered by a 1D array of stretched Ge dots and discussed  as a 
function of the angle of the heat flux with respect to the stretching direction [10]. 

Acknowledgments: This work was supported in part by the European Commission Seventh Framework Pro-
grams (FP7) under the FET-Open project TAILPHOX N° 233883 and IP project NANOPACK N° 216716. 
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Abstract: In this paper, the band structure of transverse waves propagating in a 2D phononic 
crystal composed of nanosized holes or elastic inclusions embedded in an elastic solid is cal-
culated by using the method based on the Dirichlet-to-Neumann map. The Young-Laplace 
equation is applied to take into account of the surface/interface effects of the nanosized 
holes/inclusions. Detailed calculations are presented for the systems with or without the sur-
face/interface effects. The results show that all bands descend with the first bandgap becoming 
lower and wider due to the existence of the surface/interface effects. 

Introduction
Phononic crystals, due to their unique feature of band gap, exhibit potential applications in sound 
shielding, vibration isolation, design of new acoustic devices, etc., and therefore received considerable 
attention in the last decade.1 With the rapid development of the communication technique, the size of 
acoustic devices is required to be smaller and smaller. For instance, the gigahertz communication 
generally requires the nanosized devices. In this case the influence of surface/interface energy and 
stress becomes significant.2,3 It is expected that a phononic crystal should also exhibit unique physical 
properties when its lattice scale and scatterers’ size are in the nanoscale.4 Such nano phononic crystals 
will have potential application in design of nanostructure devices, nano electric-mechanical systems 
(NEMS), etc. In this paper, the wave propagation behaviors in nanosized phononic crystals will be 
studied by considering the surface/interface effects. 

The method based on the Dirichlet-to-Neumann map5 will be used to calculate the band structures. 
The method not only has advantages in accuracy, fast convergence and memory-saving but also can 
deal with the particular boundary conditions. This allows us to consider the surface/interface effects 
using the Young-Laplace equation.6

Problem statement and numerical method 
The considered system is a 2D phononic crystal composed of circular holes or elastic inclusions in an 
elastic solid in a square lattice. The lattice constant, a , and the scatterers’ radius, 0r , are all in nano-
scales. Set the z-axis along and the xy-plane perpendicular to the axis of the scatterer. Then we con-
sider a harmonic transverse wave polarized in the z-direction and propagating in the xy-plane. The 
governing equation of this purely transverse harmonic wave is 22 0kw w+ =∇  where w is the dis-
placement component in z-direction with the time harmonic factor i te ω−  suppressed; and tk c /ω=  are 
the wave number with tc  being the transverse wave velocity and ω  the angular frequency. 

To taking into account of the surface/interface effects, we impose the following famous Young-
Laplace equation6 on the surface/ionterface of the hole/inclusion:  

0

1[ ]
s
z

rz r
θσσ
θ

∂
= −

∂
, ( )02s s s

z zθ θσ μ τ ε= − , (1)

where s
zθσ , s

zθε , sμ  are the surface stress, strain and modulus; 0τ  is the residual stress (generally we 
take 0 0τ = ); and [ ]rzσ  represents the difference between the bulk stresses of the matrix and scatterer.  

The method based on the Dirichlet-to-Neumann map (DtN map) will be used to calculate the band 
structures of the nanosized phononic crystals with consideration of surface/interface effects. The 
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method was first developed by Yuan and Lu5 for calculating the band structures of photonic crystals. 
It can be extended to the phononic crystals in a straight forward manner when the purely transverse 
wave is considered. The key steps of the method are: (i) represent the general solution of the wave 
equations by the cylindrical wave expansions with coeffi-
cients being determined by using the Young-Laplace equa-
tion at the surface/interface; (ii) obtain the DtN map, which 
relates the displacement component with its normal deriva-
tion on the boundary of the square unit cell based on the 
general solution (For the purpose of numerical computation, 
the discrete form of the DtN map should be given. To this 
end, we select N points on each edge of the square unit cell 
and write the DtN map in a 4N×4N matrix); (iii) then apply 
the Bloch theorem and the periodicity conditions to the 
boundaries of the unit cell, and formulate the problem in an 
eigenvalue equation; (iv) finally solve the eigenvalue equa-
tion to obtain the dispersion relation, i.e. the band structures.  

Results and Discussion 
Two systems are computed by using the DtN-based method. 
One is a square lattice of vacuum cylindrical holes in an 
aluminum host; another is a square lattice of aluminum cyl-
inders in a tungsten host. The band structures for these two 
systems with and without the surface/interface effects are 
presented in Figs. 1 and 2. 

The results show that, due to the existence of the sur-
face/interface effects, all bands descend and the first band 
gap becomes lower and a little wider. Further calculations 
show that the position of the band gap decreases with a very 
slight increase of the width as the absolute value of the pa-
rameter (μs−τ0)/μmatrixr0 increases.  
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Figure 1 The band structures of the pho-
nonic crystal with a square lattice of vacuum
cylindrical holes in an aluminum host with
the filling fraction of 0.55: (a) neglecting the 
surface effect; (b) taking into account of the 
surface effect, (μs−τ0)/μmatrixr0=−0.06.
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Figure 2 The band structures of the phononic crystal with a square lattice of aluminum cylinders in a tungsten host
with the filling fraction of 0.55: (a) neglecting the interface effect; (b) taking into account of the interface effect, 
(μs−τ0)/μmatrixr0=−0.06.
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Abstract: Numerical studies of phononic crystals for sensors applications are presented. The 
sensitivities of the structures on their parameters are studied. Particular attention was given in 
structures that can be probed with both electromagnetic and elastic waves. 

Phononic materials are computationally studied using the finite difference time domain (FDTD) 
method for possible applications as sensors. The structures studied where similar with the ones used 
in photonic crystal sensors applications.1 They are structures with air holes and that allows the de-
tectable materials to be more accessible in the structure. Consequently, the changes in the frequency 
response of elastic waves propagating in those structures are higher. 

The first structure studied was an epoxy slab with a square lattice of air holes. The lattice constant 
is 333nm, the radius of the air holes is 100nm and the thickness of the slab is 333nm. The transmis-
sion of elastic waves propagating through this structure shows a gap at around 6 GHz (solid line in 
Fig. 1). Covering the surface of this structure with a 16.6nm thick layer of water (see dash line in 
Fig. 1) changes the upper and lower band gap edges. Therefore it can be used a sensor for detecting 
different materials such as moisture and liquids or even proteins and other biological molecules. 

 

Figure 1 The transmission spectrum of elastic waves in an epoxy slab with a square lattice of air holes. 

The second structure studied is a three dimensional structure consisting of alternate layers of air rods 
perpendicular to each other. This is the so called layer by layer structure.2 The background material is 
silicon. The separation of the rods in each layer is 1000nm, the width of the rods 500nm and the 
thickness of each layer is 333.3nm. A band gap appears at around 1.2 GHz (see solid line in Fig. 2). 
Covering the surface of the air rods with a 33.3nm layer of water, the response of elastic waves 
propagating through the structure changes (see dash line in Fig. 2).  
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Figure 2 The transmission spectrum of elastic waves in a layer by layer structure made of air holes in silicon. 

The different parameters affecting the sensitivity of these structures will be presented, such as the size 
of the holes and the thickness of the slab. Results for defect structures will be presented. Also, the 
possibility of using those structures as hybrid sensors that can be probed with both electromagnetic 
and elastic waves will be discussed. 
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Abstract: A phononic crystal device is investigated as a sensor platform combining bandgap 
engineering with resonant transmission. We compare several approaches: a one-dimensional 
arrangement with a thin liquid analyte layer, two-dimensional phononic crystals with and 
without symmetry reduction and incidence directions normal and perpendicular to the plate.  

 

Motivation:  

Ultrasonic sensors and acoustic microsensors have been successfully exploited as chemical sensors 
for liquids. Ultrasonic sensors first of all use the dependence of speed of sound on the composition of 
a liquid mixture whereas acoustic microsensors achieve chemical sensitivity with a specific coating. 
Time-of-flight and resonance frequency, respectively, are the most utilized measurement parameters. 
Both principles cannot be combined with microfluidic systems without severe limitations. The de-
mand on sensors is permanently increasing which provide data related to material properties like con-
centration of an analyte in a fluid, conversion rate in a microreactor or adsorption of biomolecules. 
Phononic crystals have the capability to closing this gap since characteristic dimensions can be scaled 
in an appropriate range without losing its most pronounced feature, the acoustic band gap. 

Sensor Scheme:  

Phononic crystals are periodic composite materials with spatial modulation of acoustically relevant 
parameters like elasticity, mass density and longitudinal and transverse velocities of elastic waves. 
When applied as sensor, the material of interest constitutes one component of the phononic crystal, 
e.g., a fluid in the holes of a phononic crystal with a solid matrix. If the value of interest, let’s say the 
concentration of a contaminant in a liquid mixture, changes acoustic properties of this mixture, the 
acoustic properties of the phononic crystal will also change. Transmission or reflection coefficients 
are appropriate parameters for measurement and used to localize a characteristic feature of the phono-
nic crystal.  For a sensor application, a transmission peak within the band gap or a transmission dip 
outside the band gap is the most favorable feature since the respective frequency of maxi-
mum/minimum transmission is easy to determine. The sensor scheme therefore relies on the determi-
nation of the frequency dependence of maximum/minimum transmission on the physical or chemical 
value of interest. 

Sensitivity:  

The sensitivity of the sensor, Sf can be defined as the ratio of frequency shift, f, and change of the 
input parameter, x: 

Sf=
∆f
∆x

 
 

(1) 

The sensitivity has been found to be dependent on the probing frequency, f0. Furthermore, in terms of 
the detection limit the peak half band width, fHBW, must be considered, hence the reduced sensitivity, 
Sfr, gives much better insights to the sensor capabilities:  

Sf=
∆f

∆x f0∆fHBW
 

 

(2) 
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Sensor Realizations: 

The simplest realization of a sensor is the parallel arrangement of several layers of metal plates and a 
liquid in between. The transmission properties can by analytically calculated; the results can serve as 
proof-of-principle. Furthermore, relations relevant for a sensor application could be revealed. It is 
possible to realize geometries with well-defined transmission peaks in the band gap. The number of 
peaks increases with the number of layers, whereas breaking symmetry reduces the number of peaks. 
The sensitivity related to those peaks is different and in the order of macroscopic sensors. Peaks could 
be found which are independent of liquid properties; they may act as reference. The peak half band 
width decreases with the number of layers. Experiments have been performed at frequencies around 1 
MHz, requiring mm dimensions. 

Sensors utilizing 2D phononic crystal have been studied in two basic arrangements, with in-plane ex-
citation and detection of waves and an incidence direction perpendicular to the plate. For comparison 
reasons, the design has been optimized for similar probing frequencies. In both realizations a liquid 
fills all holes of the phononic crystal plate; in the latter case it also covers both surfaces. In the ‘classi-
cal’ arrangement a design with a band gap between 1.2 MHz and 1.9 MHz could be found which 
moves when a liquid with different properties is applied. More importantly, a specific peak could be 
identified which represents changes in liquid properties. However, an unfavorable large number of 
peaks appears in the band gap when the phononic crystal holes are liquid filled. To reduce the number 
of peaks and improve the separation the symmetry of the lattice has been reduced by stretching and 
distorting. The reduced sensitivity achieved so far is similar to the one-dimensional case and indicates 
similar physical background for the appearance of these narrow transmission windows. They are basi-
cally supported by resonance-like phenomena. From the sensor point of view the respective vibration 
modes are of superior importance since it allows distinguishing between volume and sur-
face/interfacial effects. Detail about simulation tools are given in [1]. 

When applying normal incidence of waves, 
also a characteristic transmission peak, see 
Fig. 1, could be found which strongly depends 
on liquid sound velocity. Again, this extraor-
dinary transmission feature is supported by 
resonance phenomena in the phononic crystal 
structure. The half band width of this peak is 
larger; hence the reduced sensitivity is lower 
than in the other realizations. On the other 
hand, the effect is more robust and the inser-
tion loss of the device is much lower, an im-
portant issue from a practical point of view. 
Since the peak frequency position is com-
pletely defined by material properties of the 
participating materials and geometry (hole 
radius and lattice constant) no calibration is 
needed. We therefore could also analyze 
sytematic error propagation. This analysis 
could, for example, clarify systematic differ-
ences between theory and experiment. Details 
will be given in [2]. 
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Figure 1 Results of FDTD calculations of the transmission spec-
trum of ultrasonic waves through a 2D phononic crystal at nor-
mal incidence. The phononic crystal consists of a steel plate with 
square lattice of holes. The composition of the liquid gradually 
changes from pure water (black) to pure propanol (green). The 
shift of the maximum transmission peak frequency reflects the 
extreme in speed of sound having the highest resonance fre-
quency at molar ratio x2 = 0.056. 
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Abstract: The boundary value problem of elastic SH-wave propagation in one-dimensional 
phononic crystals composed of functionally graded interlayers arisen from the solid diffusion 
of homogeneous isotropic material of the crystal is considered. The localization phenomena, 
transmission and band gaps due to the material gradation are investigated. 

The present work aims to propose a detailed study to band-structure analysis and elastic wave propa-
gation in one-dimensional phononic crystals of functionally graded materials (FGM) by using the 
boundary integral equation method and an extended transfer matrix method. The structure of the pho-
nonic crystals is composed of finite periodically spaced unit-cells in one-dimension made of both 
functionally graded and isotropic materials (Figure 1). The power and exponential laws representing 
the material properties of the FGM are used. In both cases two approaches are used, namely, approx-
imate modeling of the FGM structure by a certain number of isotropic layers and exact solution of the 
boundary value problem (Figure 2). 

Typical phenomena involv-
ing wave localization and 
transmission are analyzed, 
and the possibility of the 
damaged layers introduced 
following reference1 is dis-
cussed. The comparison of 
the band gaps calculated 
using the present ap-
proaches as a special case 
of one-dimensional (1D) 
phononic crystal for SH 
propagation with that of 

FGM rod2 is successfully carried out. This illustrates the applicability and the accuracy of the pro-

Figure 1 Geometry of the problem: periodic composite of functionally graded unit-cells. 

Figure 2 Models used for the simulation of functionally graded unit-cells 
(isotropic layers or exact solution). 
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posed methods compared with the existing reference solutions. The model can be extended to other 
types of waves (P-SV waves) and cases with different types of internal inhomogeneities (cracks, im-
perfect bonding etc.). 

The plane SH-wave in an elastic media is governed by the following equation 
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Here ρ(z) and µ(z) are the mass density and the shear modulus of the periodic layered structure. The 
material constants in the homogenous layers A and B of the unit-cell are continuously varied through 
a diffusion layer between A and B (Figure 1). The displacement u(z) and stress zuz  /)(   fields 
are continuous at the interfaces of the layered structure. 

The transfer matrix method for phononic crystals with FGM sublayers can be modified in the follow-
ing way. Let us consider the j-th layer of the unit-cell bounded by the z=zj

(1) and z=zj
(2) planes. From 

the governing equation (1) the generalized displacement and stress state vector },{ uv  is ex-
pressed in terms of the T-matrix 3,4  
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The T-matrix of a homogenous layer (A or B) is represented by an explicit formula (see e.g. refer-
ence5). Except the particular cases (e.g., exponential law) the T-matrix of the FGM layer is evaluated 
numerically. The numerical solution of the boundary value problem (2) is an explicit approach to be 
developed following reference6. Both models (see Figure 2) for the problem are compared with re-
spect to their efficiency and accuracy. The convergence of both approaches, the band gaps and the 
transmission coefficients for different material gradation laws are investigated by numerical examples. 
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Abstract: We review and demonstrate properties of phononic crystals over their complete phase 
space, namely, spectral (ω-space), wave vector (k-space) and phase (φ-space) properties.  The 
later two properties are applied to acoustic imaging with a phononic crystal flat lens and to inter-
ference-driven acoustic Boolean logic.  

 
    Phononic crystals (PC) are composite materials which derive their spectral (ω-space) and wave 

vector (k-space) properties from the scattering of elastic waves by periodic arrays of elastic inclusions 
embedded in an elastic matrix.  Perfect PCs and ones with defects have been shown to exhibit numerous 
useful spectral capabilities including transmission band gaps, local modes for guiding, filtering and multi-
plexing [1]. k-space properties result from features in the band structure that impact refraction. Phase (φ-
space) properties can result from non-collinear wave and group velocity vectors in the PC as well as the 
degree of refraction [2]. PC may show negative refraction leading to the possibility of developing flat 
lenses for focusing acoustic waves. To illustrate k-space functionalities, we discuss acoustic wave focus-
ing  (resulting from negative refraction) and subwavelength imaging capabilities of a PC flat lens consist-
ing of a triangular array of steel cylinders in methanol, all surrounded by water (Fig. 1). The image reso-
lution of the PC flat lens beats the Rayleigh diffraction limit because bound modes in the lens can be ex-
cited by evanescent waves emitted by the source. These are modes that only propagate in the direction 
parallel to the water/lens interface. These modes resonantly amplify evanescent waves that contribute to 
the reconstruction of an image. By employing a combination of experimental and computational (Finite 
Difference Time Domain (FDTD)) methods, we explore the effect on the image resolution and focal point 
on various structural and operational parameters such as source frequency, geometry of the lens, source 
position and time. The mechanisms by which these factors affect resolution are discussed in terms of the 
competition between the contribution of propagative modes to focusing and the ability of the source to 
excite bound modes of the PC lens. 
  We also demonstrate that the band structure of a two-dimensional PC constituted of a square array of 
cylindrical Polyvinylchloride (PVC) inclusions in an air matrix can be used to control the relative phase 
of acoustic waves. Phase control is due to the propagation of acoustic waves in the PC with wave vectors 
that are not collinear with their group velocity vectors. This condition implies that excited Bloch waves 
travel at different phase velocities in the direction of their group velocity. By modulating the phase be-
tween waves in the PC, destructive or constructive interference can occur and through this information 
can be encoded. In addition to phase control between pairs of acoustic beams, the band structure of this 
PC allows for superposition of wave vectors via the excitation of the same Bloch modes. This unique fea-
ture once again permits the possibility of destructive or constructive interferences within the PC; therefore 
it is another mechanism in which information can be encoded through relative phase. These two schemes 
of encoding information in phase establish the Boolean logic necessary for gating functions.  The realiza-
tion of the NAND and XOR gates (fig. 1) was demonstrated through FDTD technique. There are also op-
erating frequencies for which the circular equi-frequency contour (EFC) in air is larger than the first Bril-
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louin zone of the PC, allowing several Bloch modes to exit the crystal, leading to the phenomenon of 
beam splitting. This PC illustrates the possibility of extending the range of functionalities from spectral 
and wave vector properties to phase (φ-space) properties.   
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Figure 2: (a) Truth table for XOR logic gate. 
(b) schematic of PC logic gate, A’ and B’ are 
constant amplitude sources which are in phase. 
A and B are amplitude modulated sources 
which are out of phase with respect to A’ and 
B’. (c) FDTD results for input (1 1) with output 
(0), black line represents where pressure detec-
tor is placed. (d) Average pressure cuts of all 
input cases. Pressure value for input (0 0) at 
383mm is taken to be the pressure threshold. 

Figure 1: (a) Phononic Crystal system consisting of a triangular lattice of 
steel cylinders (light grey) in a methanol matrix (dark grey), all sur-
rounded by water (white). The short thick line located close to the center 
of the left side of the crystal represents the sound source. (b) FDTD dis-
persion curves of the infinite crystal (solid lines). The dashed line repre-
sents the dispersion curve in water. The intersection of the water cone 
with a negative group velocity band determines the frequency that results 
in a negative effective index of -1 for the PC. The inset shows the trian-
gular crystal lattice of the PC with the corresponding unit cell and the 
contour of the first Brillouin zone. (c) FDTD band structure in the X 
direction (parallel to the surface) for a finite 6-layer crystal. Modes above 
water line correspond to propagating modes, while those which fall be-
low are modes bound to the PC slab, which exhibit evanescent character. 
The inset depicts the supercell used in the calculation. (d) FDTD calcula-
tion of the average of the absolute value of the pressure over one period. 
On the exiting (right) side of the PC, an image is formed in the center 
accompanied by pressure lobes that decrease in magnitude as the distance 
from the surface of the crystal increases. 
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Abstract: The wave propagation and localization in one-dimensional (1D) randomly disor-
dered solid-liquid phononic crystals are studied in this paper. The transfer matrix method is 
used to calculate the localization factor which is introduced to describe the band structures for 
the disordered phononic crystals. The fluid-structure interaction is considered and the oblique 
incidence is studied.  

Introduction

Since Kushwaha1 proposed the concept of the phononic crystal (PNC) in 1993, an artificial periodic 
elastic/acoustic structure that exhibits so-called “phononic band gaps”, a lot of results on the mecha-
nism and the tuning of band gaps for various systems as well as the defect states of the systems with 
point or line defects have been reported, cf. the website http://www.phys.uoa.gr/phononics/. When a 
point, line or surface defect is introduced into an ordered PNC, waves will be localized near the de-
fects2. This property can be used to design new acoustic wave devices such as wave filters, 
waveguides, resonators, et al. PNCs mentioned above are strictly periodic in which all waves are ex-
tended states or have little defects in which some waves are localized states but most waves are ex-
tended states, so the Bloch theorem can be used3. Random disorder, caused by randomly distributed 
material defaults or manufacture errors during production process, is a different case. It is well known 
that the presence of the disorders may lead to localization phenomenon like the well-known Anderson 
localization of electron waves in disordered lattices4. Researches on randomly disordered PNCs are 
limited. In this paper we will study the acoustic waves propagating in the one-dimensional (1D) ran-
domly disordered solid-liquid PNC. The general case of wave propagation in an arbitrary direction 
will be considered. The transfer matrix method5 will be employed by considering the coupling condi-
tions of the solid and liquid media at the interface. Instead of calculating the transmitted waves, we 
will use a well-defined localization factor to characterize the band structures and localization phe-
nomenon of the system.  

The Method 
Consider a 1D PNC shown in Fig.1. 
The PNC consists of n unit cells. 
Each unit cell includes two sub-
cells made by two different materi-
als (the solid material A and the 
liquid material B) and denoted by 
subscript j =1,2. In this paper the 
transfer matrix method is used. As 
we know, the transfer matrix is 2×
2 and 4×4 for the liquid and solid 
layer, respectively. Considering the 
fluid-structure interaction condition 
the 4× 4 transfer matrix for the 
solid layer can be deduced to the 2
×2 matrix.

The solutions to the equations of wave motion are obtained by introducing potential functions to those 
equations. The transfer matrix between two consecutive sub-layers is obtained according to conditions 

y2y1 y2y1

The kth unit cella1 a2

o1
x2x1 x2x1

θ0
A B

x 

Figure 1 Schematic diagram of a 1D phononic crystal 
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at the interface between the solid and fluid. The localization factor γ  of the 1D PNCs is calculated by 
the transfer matrix method. The formulate of the localization factor is given as6

( 1)
2 ,

1

1 ˆlim ln
n

k
m R m

n
kn

γ +

→∞
=

= ∑ v                                                             (1) 

When the localization factors in the figures are equal to zero then the according frequency intervals 
are known as pass bands. When the localization factors are bigger than zero then the intervals are 
known as band gaps. 

Numerical Examples and Discussions 
We consider the PNC composed of Al (material A) and Water (material B). The disordered parameter 
is the thinkness of the liquid layer (a2) which can be expressed as 2 2[1 3 (2 1)]a a tδ= + −  where 

)1,0(∈t  is a random variable; and δ  is the disordered degree. It is understood that δ = 0 is the case 
of a perfect periodic structure. For clarity of discussion, we introduce dimensionless frequency 

1 1 1/L La cΩ ω=  where cL1 is the longitudinal wave speed in the solid material.  

The influences of the disordered degree on the band structures of the 1D ordered (the black solid line) 
and disordered (the blue dashed line and the red dotted line) PNCs for the wave incidence at an angle 
of 30° are described in Fig. 2. It can be seen from the figure that for 1D ordered solid-liquid PNCs the 
pass bands are narrower than the band gaps. For instance, consider the frequency intervals (0.725, 
0.824) and (1.451, 1.495) (the zones marked by circles). It is observed that the location factor be-
comes positive in the pass bands (excluding the lowest pass bands) when δ is nonzero and increases in 
its value as δ increases. This behavior is the so-called localization of elastic waves.  It should be no-
ticed that there are two peaks at the frequencies 1.660 and 3.167 which means that the localization are 

stronger at these frequencies. 

Conclusions

The concept of the localization factor is introduced 
to describe the band structures and localization be-
haviors of 1D perfect and randomly disordered pho-
nonic crystals. The results show that the localization 
factor is an accepted and effective parameter in char-
acterizing localization behavior of disordered pho-
nonic crystals. As the disorder of the system increase, 
the value of the localization factor increases in the 
bands. This localization behavior is more pro-
nounced at higher frequencies. 
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Figure 2 The influences of the disordered degree for
the incident at an angle of 30° 
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Abstract: Surface phonon propagation on microscopic phononic crystal slabs of Si is dynami-
cally imaged in two dimensions at frequencies up to 1 GHz by an ultrafast optical technique. 
The acoustic dispersion relations obtained by spatial and temporal Fourier transforms reveal 
stop bands and the eigenmode patterns. Phonon guiding and confinement in phononic crystal 
waveguides and cavities are also presented. 

Surface acoustic wave devices based on one-dimensional (1D) periodic structures have found exten-
sive application in high-frequency signal processing. 2D phononic crystals exhibit interesting physical 
properties, such as omnidirectional stop bands, that allow potential improvements to these devices. 
Here we present results of real-time imaging of optically-induced surface phonons at frequencies up 
to ~1 GHz in phononic crystal slab structures based on honeycomb lattices1. These structures exhibit 
complete stop bands for Lamb wave propagation.  

We use optical pulses of duration ~200 fs, wavelength 830 nm and repetition rate 80 MHz from a 
Ti:sapphire femtosecond laser. A 415 nm pump beam derived from this laser excites phonon wave 
packets at a point on the sample surface by thermoelastic expansion. The 830 nm beam, after being 
delayed relative to the pump beam, is used to probe the sample with an interferometer. The beams are 
focused to spots of about 1 m in diameter. The probe spot is scanned across the sample relative to 
the pump to generate images at various delay times over an area ~ 200200 m2, allowing movies of 
the out-of-plane velocity of the surface motion to be obtained at acoustic frequencies up to ~ 1 GHz2,3. 

The samples are based on  microscopic honeycomb lattices of circular holes patterned in (111) sili-
con-on-insulator wafers by a dry etching process. The silicon oxide (insulator) is then removed by wet 

 
Figure 1 Electron microscope image of a (111) Si 
slab sample consisting of a Y-shaped waveguide 
formed by holes of diameter 5.8 m arranged in a 
honeycomb lattice with center-to-center spacing 
6.6 m. The thickness of the slab is 6.5 m. 

 
Figure 2 Corresponding image of the surface motion in 
the Y-shaped waveguide. The frequency is 322 MHz, 
lying at the top of the first stop band. A 200 200 m2 
region is shown. 
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etching to leave free standing crystalline Si slabs of thickness 6.5 m. A typical sample pattern, with 
the x axis corresponding in the [-2, 1, 1] direction of the crystal, is shown in Fig. 1;  a Y-shaped region 
with no holes forms a phononic crystal waveguide. The center-to-center spacing of the holes is a=6.6 
m, whereas the diameter is 2r=5.8 m. The ratio r/a=0.44. The expected first complete phononic 
stop band lies between ~ 230 and 320 MHz for this phononic slab, as verified by simulations based on 
the orthogonal plane wave method.  

Figure 2 shows a snapshot of a 200 m square region of this sample at a frequency of 322 MHz. The 
excitation point is just outside the top end of the waveguide. This image was obtained from the tem-
poral Fourier transform of time-domain data. Because this frequency corresponds to the top of the 
first stop band, the phononic waveguide transmits relatively efficiently. 

We have in this way visualized the propagation of surface phonons in microscopic two-dimensional 
phononic crystals, phononic crystal waveguides and phononic crystal cavities based on this slab ge-
ometry. The dispersion relations, including stop bands, and the eigenmode patterns in two dimensions 
at individual frequencies are extracted by spatial and temporal Fourier transforms. 

In addition we have conducted finite element time domain numerical simulations of phonon propaga-
tion in these phononic crystal structures that agree substantially with the experimental results. This 
work should lead to new diagnostic techniques for the propagation of surface acoustic waves in pho-
nonic structures, including surface acoustic wave devices4. 
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Abstract: We present an analysis of surface acoustic waves propagating in a microscopic 
phononic crystal waveguide consisting of a silicon crystal containing a square array of holes. 
Experiments are performed using an ultrafast optical method and the results are compared 
with an FEM simulation. 

By modifying the structure inside a phononic crystal, waveguide devices that control the path of 
propagation of surface acoustic waves can be created1,2. Such devices are useful in signal processing 
and filtering applications. Optical generation and detection of surface waves has proved effective in 
visualising their propagation in real time3,4. We present results of real-time imaging and simulation of 
laser-induced surface acoustic waves at frequencies up to ~1 GHz in phononic crystals with a 
waveguide structure. 

We generate and detect surface acoustic waves in phononic crystal waveguides using an optical 
pump-and-probe method3,4. The phononic crystals, made by deep reactive ion etching, contain micro-
scopic circular holes 100 m deep in (100) silicon arranged in a square array, with the waveguide 
channel formed by the absence of selected holes. The optical pulses used for excitation and detection 
are generated by a mode-locked Ti:sapphire laser. A 415 nm pump beam derived from this laser 
thermo-elastically excites the acoustic waves and an 830 nm probe beam delayed relative to the pump 
beam is used for detection with an interferometer. The optical pulse duration is ~200 fs and the repeti-

Figure 2 Simulation image of surface acoustic 
waves at 656 MHz propagating in a linear pho-
nonic crystal waveguide. Image size is 160×160 
μm2. The horizontal direction corresponds to the 
[011] crystalline direction. 
 

Figure 1 Experimental image of surface acoustic 
waves at 656 MHz propagating in a linear pho-
nonic crystal waveguide. Image size is 160×160 
μm2. The horizontal direction corresponds to the 
[011] crystalline direction. 
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tion rate is 80 MHz. The beams are focused to a spot of about 1 μm in diameter. The probe beam is 
scanned across the sample to generate images of regions of about 160×160 μm2 in area. By varying 
the probe delay time, we build up animations of the surface waves propagating through the 
waveguides. 
 

The experimental results are compared with a numerical simulation based on the Finite Element 
Method (FEM). The three-dimensional (3D) model consists of approximately 150 million nodes, and 
the resulting out-of-plane surface displacements are taken as the numerical counterpart of the experi-
mental images. Movies of the surface wave propagation in the time domain are first obtained. 
 

For both experiment and simulation results, we then use a dual Fourier transform method consisting 
of  1D temporal and 2D spatial Fourier transforms to extract the acoustic fields and slowness surfaces 
in 2D at individual frequencies. Time-resolved images reveal effects such as diffraction, refraction, 
reflection, resonance and waveguiding. The results show significant dependence of the wave propaga-
tion on frequency. In particular, the transmission through the waveguide channel shows peaks at par-
ticular frequencies. At other frequencies, there is strong attenuation due to the waves leaking into the 
phononic crystal region. Figure 1 shows the modulus of the experimentally measured field amplitude 
in a linear phononic crystal waveguide sample at 656 MHz. This frequency lies well above the first 
phononic stop band. The phononic crystal in this case is made up of a square lattice of circular holes 
with radius 6.5 μm, corresponding to a filling fraction of 70%. The pump pulses are focused at about 
20 μm to the left of the opening of the waveguide, and the excited surface acoustic waves (SAW) 
propagate outwards from this point. Figure 2 shows the corresponding simulation results at the same 
frequency, exhibiting good agreement with the experiment. In both cases, there is significant attenua-
tion of the excited waves in the waveguide channel. At other frequencies, for example at 328 MHz 
corresponding to the first phononic stop band, we observe much less attenuation in the waveguide. 

 

This research allows the identification of the mechanisms responsible for the interaction of surface 
waves with phononic crystal devices, as well as being useful for the design and analysis of novel 
SAW waveguide devices. 
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Abstract: The complex band structure of evanescent Bloch waves in phononic crystals is elu-
cidated by formulating an eigenvalue problem for the wavevector versus the frequency. It is 
used to explore the effects of material losses and the phononic crystal guidance mechanism.  
The method, originally formulated for plane waves, is extended to finite element models.

Phononic crystals are two- or three-dimensional periodic structures that consist of two materials with 
different elastic constants. They possibly give rise to absolute stop bands for a right choice of geomet-
rical conditions and combination of materials. In addition, their unique dispersion properties can be 
used to design efficient waveguides, cavities or to obtain unusual refraction properties. Band structures 
are usually employed to describe infinite phononic crystals, as they provide information regarding any 
wave propagating in the periodic medium (Bloch waves). However, it is well-known that evanescent 
waves must be considered in propagation problems whenever scattering, diffusion, or diffraction by an 
object of finite size are investigated. In the context of phononic crystals, evanescent waves appear very 
naturally within frequency band gaps: since no waves can propagate within a band gap, only evanescent 
waves are left to explain the exponentially-decreasing transmission of acoustic waves. Furthermore, the 
mechanisms behind the creation of phononic crystal cavities and waveguides based on defects involve 
that only evanescent waves are present outside the defect, so that energy confinement can be guaran-
teed. A description of the effect of material losses on the propagation of elastic or acoustic waves can 
also be obtained – at least for incident monochromatic waves – by considering complex wavevectors.

In a recent paper1, we extended the classical plane wave expansion (PWE) method so that it includes 
complex wave vectors in the direction of propagation. To do so, it is necessary to consider a fixed fre-

quency and to solve for the wave vector k(), in contrast to the traditional way of obtaining band struc-

tures by considering any Bloch wave vector within the first Brillouin zone and solving for the frequency 

of allowed modes (k). The extended PWE method was used to generate band structures for two-di-

mensional solid-solid or solid-void phononic crystals. With the method, both propagative and evanes-
cent solutions are found at once. The decay constants within band gaps are thus found and shown to de-
pend on the wave polarization. Complex band structures also allow us to identify clearly the different 
branch systems in the band structure as these become continuous functions of the frequency. They also 
connect propagating bands below and above band gaps through evanescent bands, so that band folding 
can be unambiguously followed. Furthermore,  the distribution of the acoustic fields of evanescent 
modes can be computed. Their transformation from below to above a band gap and within was shown 
to be perfectly continuous along the corresponding complex branch of the band structure.

As suggested above, complex band structures can be obtained for lossy phononic crystals. We have 
specifically considered the case of viscoelastic media. In order to include material damping, the rank-4 

viscosity tensor ijkl is introduced. This tensor has the same symmetry as the elastic tensor cijkl. Attenu-

ation can be assumed to increase linearly with frequency, as it proper to polymers but also to crystalline 
solids such as silicon, quartz or lithium niobate. For monochromatic waves, a complex-valued elastic 

tensor can then be written as  cijkl + iijkl. More generally, any frequency dependent complex elastic 

tensor could be considered to model loss, without any further modification of the method. We have 
computed complex band structures via the extended PWE method for various phononic crystals, e.g. 
composed of steel rods in lossy epoxy2 or of hollow holes in a silicon matrix, as depicted in Figure 1. 
Significantly, we have found that in contrast to homogeneous materials, the real part of the wavevector 
is more affected by losses than its imaginary part is. This effect is especially pronounced whenever the 
group velocity is small, for instance at the edges of a band gap. It also causes flat bands to acquire en-
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hanced losses. Furthermore, the group velocity is limited by losses to finite values larger than zero, the 
value of the limit increasing with the level of viscosity.

Figure 1 Complex dispersion relation computed with the EPWE method for a lossy square-lattice phononic crystal of silic -
on with cylindrical holes, with filling fraction 57%, and η44 = 0.08 Pa.s. In the complex band structure, the reduced fre-
quency is presented as a function of (a) the real part and (b) the imaginary part of the wave vector. Only pure shear waves  
are shown for simplicity.

It is well known that the PWE method, though it is able to represent an almost arbitrary distribution of 
material constants within the unit-cell, can suffer in certain cases from some convergence problems or 
computational inefficiency. The finite element method (FEM) is also well suited to the representation of 
arbitrary material distributions, but is in contrast immune from the above detrimental effects. FEM is 

generally used to compute classical k() band structures, but there is a strong interest to extend it to 

complex band structures. We introduce a general variational framework to obtain extended FEM al-
gorithms. For definiteness, the popular example of two-dimensional phononic crystals of steel rods in 
water is considered. Complex band structures limited to purely longitudinal waves are obtained in this 
case.

After analyzing the perfectly periodic phononic crystal, we turn to the defect-based guidance mechan-
ism. As argued above, guidance relies on the fact that all Bloch waves are evanescent in the phononic 
crystal surrounding the defect, providing the frequency falls within a complete band gap. A usual pro-
cedure is the super-cell technique, whereby a pseudo-periodic unit-cell is created by surrounding the de-
fect with a few rows of phononic crystal.  Computing the complex band structure for the super-cell 
gives a very precise understanding of the strength of the guidance (via the absolute value of the imagin-
ary part of the wavevector for evanescent Bloch waves). Furthermore, the dispersion and the interaction 
of the different guided modes can be identified. We especially observe band gaps for guided modes that 
appear along the direction of the defect for frequencies within the two-dimensional phononic crystal 
complete band gap.

Financial support by the Agence Nationale de la Recherche under grant ANR-09-BLAN-0167-01 is 
gratefully acknowledged.
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Abstract: This work presents, for the first time, the design and the experimental demonstra-
tion of an air/aluminum nitride (AlN) phononic band gap (PBG) structure patterned in a fractal 
fashion which exhibits two frequency stop bands for symmetric lamb waves respectively at 
900 MHz (bandwidth of 11%) and 1.075 GHz (bandwidth of 13.5%) with a maximum acous-
tic attenuation of 45 dB. 

Thanks to the advancements introduced by micro-
fabrication techniques, the research activities in 
phononic band gap (PBG) structures have recently 
matured from a theoretical exercise or the fabrica-
tion of hand-assembled components to the physical 
demonstration of large scale manufacturable struc-
tures operating in the high frequency range 1,2,3. 
More intriguingly, recent experimental demonstra-
tions have evolved to the point that realizing PBG-
based devices, such as resonators 4,5 and wave-
guides 2, operating in the very high frequency 
(VHF) range is possible. However, in order to em-
ploy the PBG structures for commercial applica-
tions (i.e. wireless communications), it is neces-
sary to expand the operation of these structures to 
a higher frequency range, which requires the mi-
niaturization of the PBG unit cell. In this work, a 
novel fractal PBG structure design is introduced in order to operate in the ultra high frequency (UHF) 
range using a lithographically-defined minimum feature size of 0.7 μm. The unit cell consists of a 

center square with four smaller squares repeating at its 
four corners (Figure 1). Due to its unique geometry, 
the fractal PBG design prohibits the acoustic wave 
propagation of higher order modes of vibration (Figure 
2) instead of the fundamental ones, which are gener-
ally blocked by the conventional circular scatterers 
distanced by the same pitch. Therefore, the fractal 
PBG enables operation at higher frequency for the 
same lithographically defined geometrical dimensions. 
To demonstrate a PBG structure in the range of 1 GHz, 
its key dimensions are designed to be:  5 μm for the 
lattice constant, a; 2 μm for the center square length, c; 
and 1.5 μm for the side square length (Figure 1), s. 
Lastly, the unit cell thickness is set to 1 μm in order to 
obtain sufficient electro-mechanical coupling for in-
plane integration with the lamb wave transducers. 
 
Experimental Results 
In this experiment, AlN lamb wave transducers are 
integrated in the same plane of the PBG structure to 
efficiently launch longitudinal acoustic waves in the 
PBG (Figure 3a). 14 transducers were used to cover 

Figure 1 The array and unit cell of the fractal PBG structure 
with its physical key parameters: lattice constant, a, center 
square length, c, side square length, s, and thickness, d. 

Figure 2 The dispersion relationship between the nor-
malized frequency and the wave vectors in the reci-
procal space of the first symmetric Brillouin zone. The 
red-shaded area is the complete frequency band gap 
displayed by the fractal structure with key parameter 
ratios c/a = 0.44, s/c = 0.68, and d/a = 0.2. 
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the frequency range of interest and 
extract the PBG response. The entire 
set of devices, the reference plate and 
the PBG were all simultaneously mi-
cro-fabricated in a post-CMOS com-
patible process (Figure 3). The AlN 
delay-line transducers were designed 
to serve as the reference of the acous-

tic responses (Figure 3b). The PBG response was measured via an Agilent N5230 PNA-L network 
analyzer after a standard short-open-load-through (SOLT) calibration. Approximately 4-5% band-
width of each transducer was taken and summed to cover the entire frequency range of interest. Then, 
the PBG response was normalized with respect to the delay-line reference response. Figure 4 shows 
the existence of two frequency stop bands 
centered at 900 MHz and 1.075 GHz with 
bandwidths of 11% and 13.5%, respec-
tively. The designed PBG structure exhib-
its a maximum acoustic attenuation of 
45 dB. The experimental data were con-
firmed by means of COMSOL finite ele-
ment methods (FEM). The eigenfre-
quency analysis in the FEM approach 
offers an efficient way to estimate the 
frequency of operation of the band gaps 
and the associated bandwidths.   
 
Conclusion 
The operation of the fractal PBG design 
in air/aluminum nitride at 1 GHz has been 
experimentally demonstrated and con-
firmed by COMSOL FEM.  Having 
reached the GHz range, it now becomes 
feasible to start considering the demon-
strations of PBG-based RF devices for 
practical applications. Simultaneously, exotic PBG designs will be explored to further simply manu-
facturing processes in the UHF and SHF range. 
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Figure 3 SEM images of : (a) the AlN lamb 
wave transducers and the fractal PBG array; (b) 
the AlN bulk acoustic delay-line used as refer-
ence device; (c) the zoomed-in view of the unit 
cell of the fractal PBG structure and its physical 
key parameters: a = 5 μm, c = 2 μm, s = 1.5 μm. 

Figure 4 The COMSOL FEM dispersion curve versus the experi-
mental normalized acoustic transmission of the PBG structure. Note: 
the blue square dotted lines represent the longitudinal modes; the 
green triangular dotted lines represent non-longitudinal ones (shear 
and transverse modes).  
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




 


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








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  

  

       
     
          
       
      


 



        



 



     
     





     



            

       
       
    
        
      
  



Phononics 2011: First International Conference on Phononic Crystals, Metamaterials and Optomechanics
Santa Fe, New Mexico, USA, May 29-June 2, 2011

PHONONICS-2011-0109

1



85

Phononics 2011 	 Track 1: Phononic Crystals

          

        

  







 



      
          
     
    
  

                 








 
 
 
 
 
 
 


 






   
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Locally resonant and Bragg band gaps for surface acoustic 
waves

Younes Achaoui1, Abdelkrim Khelif 1,2, Sarah Benchabane1, Laurent Robert1,
and Vincent Laude1

1 Institut FEMTO-ST, Université de Franche-Comté and CNRS, Besançon France  
younes.achaoui@femto-st.fr, sarah.benchabane@femto-st.fr, vincent.laude@femto-st.fr

2 International Joint Laboratory GeorgiaTech-CNRS UMI 2958; 2-3 Rue Marconi 57070 Metz, France  
akhelif3@mail.gatech.edu

Abstract: We investigate the propagation of surface acoustic waves in a square lat-
tice phononic crystal of cylindrical pillars on an anisotropic substrate. It is shown that 
the propagation of surface acoustic phonons is prohibited in two distinct frequency 
ranges. We identify two mechanisms responsible for band gaps, i.e. local resonances 
and Bragg diffraction, and point out the difference between them.   

The last years have seen a significant rise in the number of studies of band gap materials for acoustic 
waves. Basically, these artificial materials can be classified into two distinct families: phononic crys-
tals1 and acoustic metamaterials2. Indeed, they can both prohibit the propagation of acoustic waves in 
certain frequency ranges for all directions of incidence, but the physical phenomena behind are mark-
edly different. The key parameter to obtain band gaps in the case of phononic crystals is periodicity, 
while the local frequency resonance of each basic cell dominates in the case of acoustic metamaterial. 
Furthermore, the position of band gaps in acoustic metamaterials can be significantly lower in fre-
quency than the Bragg band gaps of phononic crystals. These sub-wavelength composites are good 
alternatives to overcome cumbersome devices in the sonic regime for instance.  

Many works have been reported in the case of bulk waves for both phononic crystals and metamateri-
als. In the case of guided waves, drilling holes in a semi-infinite media as well as in thin plates was 
shown to prohibit the propagation of acoustic waves for wavelengths of the order of the lattice 
pitch3,4. More recently, low-frequency gaps and waveguiding in phononic crystals of pillars (or dots) 
on a plate have been demonstrated5,6. Here, we investigate experimentally the omnidirectional locally 
resonant and Bragg band gaps for surface acoustic waves on a semi-infinite substrate supporting a 
periodic array of pillars.

In our experiment, a square lattice array of cylindrical nickel pillars grown on a lithium niobate sub-
strate has been considered. Surface acoustic waves are generated and detected using chirped interdigi-
tal transducers (CIDTs). These transducers are broadband sources placed on both sides of the periodic 
structure, as depicted in Figure 1. Several different samples have been fabricated in order to vary the 
direction of propagation and the investigated frequency range. Figure 2 shows examples of the ectrical 
transmission measured for propagation in the X-crystallographic direction using a network analyzer 
and radio-frequency probes. Figure 2-a and 2-b show the results obtained in two distinct frequency 
ranges. The red line shows the electrical response when no phononic crystal is present and is used as a 
reference. The green line shows the measurement in the presence of the phononic crystal. 

Figure 1 Schematics of the experimental setup 
used for investigating the interaction between the 
phononic crystal and surface acoustic waves. The 
periodic structure is a square lattice of nickel pil-
lars grown on the surface of a lithium niobate 
substrate. Chirped interdigital transducers are 
placed on both sides for the emission and the de-
tection of broadband surface acoustic waves using 
the piezoelectricity of lithium niobate.  
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With the periodic structure in between the two chirped transducers, we observe the appearance of a 
low frequency attenuation dip in the vicinity of 80 MHz (figure 2-a) and a second high frequency at-
tenuation range in the vicinity of 140 MHz (figure 2-b). Transmission close to unity, i.e. with no no-
ticeable loss, is observed between the two band gaps. Attenuation above 210 MHz is attributed to the 
conversion of guided modes to bulk waves propagating inside the substrate. The physical origin of the 
two gaps has been further investigated using optical interferometry. It is observed that the energy of 
surface waves is stored inside the pillars in the case of the low frequency gap, while the same waves 
are scattered on the surface in the case of the second band gap, leading to destructive interferences 
characteristic of the Bragg mechanism. We also obtained the group delay and the phase shift that is 
induced by the periodic structure on the propagation of surface waves. 

Figure 2 Measured electrical transmission using chirped interdigital transducers with (green line) and without (red line) 
the periodic structure in between. Case of (a) the locally resonant band gap (around 80 MHz) and (b) the Bragg band gap 
(around 140 MHz). 

In order to account for the above results, we have computed dispersion curves and displacement field 
maps using a finite element method. We find that the pillars on the surface support locally resonant 
modes that extend inside the sound cone, and that band gaps for guided surface acoustic waves can be 
clearly defined.  

According to our previous theoretical work7, the main parameter that can shift in frequency the locally 
resonant band gap is the height of the pillars. Indeed, the locally resonant band gap is a consequence 
of the interaction of a resonance of the pillar with surface waves propagating on the substrate support-
ing the periodic structure. This resonance is also a function of the elastic constants of the pillars, of 
their mass density and of the geometrical details. For the same material choice, we have varied ex-
perimentally the height of the pillars and have monitored the corresponding change in the lower band 
gap frequency position. Increasing the height of the pillars results in a clear down-shift of the lower 
band gap, leading us to the conclusion that the latter results from a local resonance of the pillars.  

Financial support by the Agence Nationale de la recherche under grant ANR-09-BLAN-0167-01 is 
gratefully acknowledged. 
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Focusing and Waveguiding of Lamb Waves  
in Phononic Plates 

Tsung-Tsong Wu, Jia-Hong Sun, Yan-Ting Chen 

Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan 

wutt@ntu.edu.tw 
 

Abstract: In this talk, focusing of Lamb waves using the GRIN PC will be introduced first, 
and then followed by a concept demonstration of utilizing the focusing feature to compress 
Lamb waves into a phononic plate waveguide. Results of the study showed that beam width of 
the lowest anti-symmetric Lamb wave in a silicon PC thin plate can be compressed efficiently 
and fitted into the tungsten/silicon PC plate waveguide over a wide range of frequency. 

Propagation of Lamb waves in thin plates with phononic crystal (PC) structures has attracted much 
interest due to the existence of absolute band gap (ABG) and the potential applications in filters, reso-
nators, and waveguides in the past couple of years.1-3 In comparison to the ABG, researches on the 
negative refraction and focusing of waves in phononic thin plates have just been started recently. Pre-
liminary results showed that focusing of Lamb waves in thin plate can be achieved either by the nega-
tive refraction or using the gradient-index (GRIN) PC structure.4,5  

In this talk, focusing of Lamb waves due to the features of 
GRIN PC will be introduced first, and then a concept dem-
onstration of utilizing the focusing features to compress 
Lamb waves into a phononic plate waveguide. The band 
structure of an air/silicon PC plate (thickness:50 m, lattice 
constant a =100m and, radius r =40m) with square lattice 
was studied and the equal frequency contours (EFCs) of the 
lowest anti-symmetric mode (A0), the symmetric mode (S0) 
and shear horizontal mode (SH0) are shown in Figure 1. The 
results revealed that the A0 mode is close to a circle (i.e., be-
have like an isotropic medium), while the S0 and SH0 modes 
are rather anisotropic. Figure 1 is the equal frequency con-
tours (EFCs) evaluated at 3 MHz. 

To design a GRIN PC plate for focusing the A0 mode, we 
chose a refractive index profile in the form of a hyperbolic 
secant as6  

0( ) sech( )n y n y  (1) 

where 0n is the refractive index along the center axis (x-axis) and   is the gradient coefficient. For 
small anisotropic ratio and the overall waves propagating along the x-direciton, the refractive index of 
the A0 mode was approximated by the refractive index along the ΓX direction as 

X X

.   
/

v vn
v d dk 

                                (2) 

where Xv is the group velocity along the ΓX direction and v  is the referenced group velocity of the 
A0 mode of a homogeneous silicon plate with the same thickness (evaluated at 3 MHz). Consider a 
GRIN PC contained 15 rows of air holes (y= [－7 a, +7 a]) arranged in square lattice with graded fill-
ing fractions and operated at 3 MHz. By setting the radii of the holes at the center row (y = 0) and the 
boundary rows (y= ±7 a), the gradient coefficient can be determined accordingly.  

Figure 1 The equal frequency contours of the 
lowest anti-symmetric mode (A0), symmetric 
mode (S0) and shear horizontal mode (SH0). 
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To demonstrate the focusing of Lamb wave in the designed GRIN PC plate, numerical simulations 
were conducted with a line source placed at x= -2a. The result showed focusing of the wave beam 
along the propagation direction and reach maximum amplitude at x=28a approximately, and then, di-
verging out again. The simulation results also showed that the neck of the focus region extends for a 
long distance, which started from around 22a to 34a in this case.  

To test the feasibility of compressing the wave beam of a plate wave into a wave guide with small 
aperture, the GRIN PC plate was terminated at x=22a and utilized as a beam width compressor. A 
phononic plate waveguide formed by removing one layer of cylinders from a silicon PC plate with 
periodic stubbed tungsten cylinders7,8 (square lattice) on one of the plate surfaces was employed. By 
choosing the lattice constant of the PC waveguide as 150 m and the radius and height of the tungsten 
cylinders as 36 m and 273 m, respectively, a complete band gap can be found in the range of 2.6-
3.4 MHz. Figure 2 shows a combination of the GRIN PC beam width compressor and the aforemen-
tioned PC waveguide. The simulation result for operating frequency at 3 MHz demonstrates that the 
compressing and guiding of the 
wave beam into the designed 
waveguide can be achieved suc-
cessfully. By taking the amplitude 
of the line source as unit, the result 
shows that the amplitude at the en-
trance of the waveguide is ampli-
fied to about 3.2. In addition, after 
propagating for a distance of 15 a 
in the waveguide, the wave ampli-
tude still preserve a value of 2.8. 
Since the aperture of the line source 
is15a , the results showed that the FWHM of the compressing is about 17.3%. To demonstrate that 
the proposed GRIN PC plate focusing device is suitable for compressing wave with a range of fre-
quency, numerical simulations with operating frequencies at 2.7 and 3.4 MHz were also conducted 
and the results showed that the focusing and compressing of Lamb waves are still valid with the am-
plitudes at the entrance of the waveguide equal to 2.5 and 2.6, respectively.  

In summary, focusing of Lamb wave can be achieved by using a GRIN air/silicon PC thin plate. The 
refractive index profile in the form of a hyperbolic secant can be utilized approximately to design the 
GRIN PC plate. The results showed that the beam width of the lowest anti-symmetric Lamb mode can 
be compressed efficiently over a range of frequency and can potentially be utilized as a beam width 
compressor for compressing Lamb waves into a PC plate waveguide in the MEMS area.  
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Figure 2 Simulation of the wave propagation along the x-direction in a 
GRIN PC plate adjoined with a PC plate waveguide at 3 MHz. 
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Abstract: Phononic bandgap materials are optimized for maximization of bandgap size and 
minimization of center frequency using a genetic programming method for inclusion shape 
design and material choice.  Maximizing the bandgap size allows for a material design that 
can block a wide range of frequencies.  Minimizing the center frequency will give designs that 
are small compared to the effective wavelength.   

Phononic crystals have received much attention for their interesting properties, in fact, material choice 
and geometry can be engineered to obtain band stop filters1, negative bulk properties2, and cloaking3.  
Here, we wish to optimize two goals simultaneously: bandgap size and center frequency.  Maximizing 
the bandgap size allows for structures that can block a wide range of frequencies.  In many instances, 
a narrowband filter is of little use.  The second goal is to minimize the center frequency of the band-
gap.  The center frequency determines the absolute range of frequencies that will be blocked.  Seeking 
a low center frequency will yield a material that blocks propagating waves that have long wavelengths 
compared to the unit cell size, ultimately leading to smaller structures.   

Multi-objective optimization of phononic 
crystals has been discussed previously4, where 
those authors optimized one dimensional 
structures for optimal pass-band and stop-band 
operation.  Here, we optimize two dimension-
al, elastic structures using a genetic program-
ming approach5 and allow the optimizer to 
choose among several materials.  The mate-
rials chosen are based on those that have been 
shown to lead to low frequency operation6.  
Results show that a set of Pareto optimal de-
signs can be achieved for wide band and low 
frequency operation.   

Optimization Method 
Genetic programming (GP) is an optimization 
method derived from genetic algorithms 
(GAs), but uses a tree shaped chromosome to 
represent computer programs or general ma-
thematical expressions.  It has also been 
adapted to optimize geometry and topology in 
a general way5:  As shown in Figure 1, Boo-
lean expressions can be used to combine con-
vex polygons, generating complex geometries 
from a few simple building blocks.  In this 
approach, the convex polygon operands are 
represented as the convex hull of a list of 
points.  A few advantages include: representa-
tion of large homogeneous regions with a 
small number of parameters, representation of 
both sharp corners and smooth regions, and 

Figure 1 Decoding process.  (a) Tree representation of a Boo-
lean expression.  (b) Point lists with their convex hulls, corre-
sponding to leaf nodes in the tree.  (c) Union of the left-most 
subtree.  (d) Union of the result of (c) with remaining leaf 
node.  (e) Final result. 
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adaptability to inhomogeneous geometries.   

Genetic algorithms (and by extension genetic programming) are well-suited to multi-objective prob-
lems because they already use a population of potential solutions.  There have been many examples of 
multi-objective GAs, of which Ref. 4 is an example.  Implementing Pareto optimization in a GA only 
involves changes to the selection operator, so any GP implementation is identical.   

In contrast to Ref. 5, this application benefits from inhomogeneous structures7.  Optimizing inhomo-
geneous structures using genetic programming requires a few modifications to the chromosome of 
Ref. 5.  First, Boolean operations are no longer applicable because we require the operands to have 
some material properties.  Instead, we apply an overlapping scheme based on a priority value (real 
valued and rounded to the nearest integer before use) stored in each operand.  Given a sub-tree with 
two convex polygon operands, the operand with the higher priority is placed on top of the other.  If 
two operands have identical priority values, then the union is used, taking the material properties from 
the left operand.  The priority values, as well as the material values, are involved in crossover and mu-
tation.  In this application, a database of materials will be used rather than allowing the optimization 
scheme to vary the actual bulk material properties as in Ref. 7.   

Forward Problem 
The forward problem is based on formulating the elastic wave equation as an eigenvalue problem, so 
that a band diagram can be computed1.  Essentially, Floquet boundary conditions are applied to two 
edges of a square unit cell and the elastic wave equation is discretized using linear finite elements.  
After testing and basis function substitution, a matrix equation is formed 

         (1) 
which is a generalized eigenvalue problem in  and x.  A local search algorithm is applied to find the 
lower band maximum 1 and upper band minimum 2, which gives the relative bandgap size 

      
     

   (2) 

and center frequency 

      
   (3) 

Results 
Pareto optimization was applied for the simultaneous optimization of bandgap size and center fre-
quency using three materials: epoxy, lead, and silicone rubber6.  The epoxy is fixed as the matrix ma-
terial, and the algorithm is free to choose among it and the lead and rubber to form the inclusions. 

Initial generations show two distinct clusters of (Pareto optimal) designs based on material: designs 
using lead show high center frequency and bandgaps, and designs using the rubber show the opposite.  
As the algorithm combines materials, the Pareto front 
(shown in Figure 2 as the “o” after 95 generations) begins 
to fill.  Full results will be given at the conference.   
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Figure 2 Pareto curve (o) after 95 
generations 
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Abstract: Explicit analytical and recursive stress solutions and corresponding natural fre-
quencies are derived for an m-layered Goupillaud-type elastic medium from a coupled first-
order system of difference equations using z-transform methods. The exact solutions can serve 
to verify computational methods for modeling wave propagation phenomena such as reson-
ance and bandgap formation in periodic media.  

The study of natural vibrations in elastic media include the study of resonance, as resonance can en-
hance the performance of many sensors and devices, yet can devastate structures subjected to sus-
tained temporally-periodic loading. Despite the long history of developments in the field, exact solu-
tions for the natural modes of vibration and the resonance response of multilayered (m-layered) elastic 

media have been primarily limited to the anal-
ysis involving only a few layers.  Laplace 
transform methods are used in Ref. 1 to derive 
the transient resonance response of a free-fixed 
elastic bar; the analytical solution consists of a 
product of a temporal term and time-harmonic 
function in the solution, which becomes un-
bounded at large times. Ref. 2 provides closed-
form, time-domain expressions for transient 
waves in an m-layered elastic medium, with an 
illustration of the transient resonance response 
of a single isotropic elastic layer sandwiched 
between two half-spaces that is subjected to a 
temporally periodic sawtooth function. Ref. 3 

studies the natural frequencies of anisotropic 
m-layers, and illustrates beat phenomena in 
two and three layer systems using an efficient 
numerical eigensolution scheme that is based 
on semi-analytical methods.  Exact expressions 
for the reflection coefficients for a two-
dimensional elastic layer overlying an elastic 
half-space are obtained in Ref. 4, but the tran-
sient response of the system at resonance is not 
analyzed.  A general method to determine the 

natural frequencies of composite rods for power ultrasonic applications with a specific solution for a 
two-rod system is presented in Ref. 5.  The method can be extended to m-layered systems, but the 
general problem of determining the natural frequencies of arbitrary layer-thickness and material prop-
erties can only be solved using numerical methods.   Exact analytical expressions are derivable, how-
ever, for the transient resonance response of an m-layered medium if we specialize the medium to be 
of Goupillaud-type6. Both recursive relations and explicit analytical expressions are derived that are 
exact for discretely layered and periodic media of Goupillaud-type (Figure 1); such solutions are inva-
luable for verification of computational methods involving transient of wave phenomena in such me-
dia. A related inverse problem in reflection seismology for finding the coefficients of a first order 2 x 
2 hyperbolic system is treated in Ref. 7. In order to numerically solve the continuous initial-boundary-
value problem, several difference schemes (stencils) are applied as discretizations to the correspond-
ing differential equations. The difference scheme IVp, given in equation (3.1.11), pg. 517 of Ref. 7 is 
similar to our recursive relations (1) derived using the method-of-characteristics.  

Figure 1 Lagrangian diagram for an elastic m-layered medium 
of equal wave travel time (Goupillaud-type medium) subjected 
to an arbitrary, discrete input f(n) on the left boundary and fixed 
on the right boundary. 
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Resonance in m-layers 
Explicit analytical stress solutions are derived from a coupled first-order system of difference equa-
tions (1) using z-transform methods, and the determinant of the global system matrix |Am| in the z-
space is a palindromic polynomial with real coefficients; the zeros are distinct and proven to lie on the 
unit circle for 1 ≤ m ≤ 5 layers (Ref. 8), and for certain classes of m-layered designs of tridiagonal 
Toeplitz variety, i.e., continuants (Ref. 9). Stresses 𝑠𝑠𝑖𝑖(𝑛𝑛) in the layers with impedance contrast 
𝛼𝛼𝑖𝑖 = 𝑐𝑐𝑖𝑖𝜌𝜌𝑖𝑖 𝑐𝑐𝑖𝑖+1𝜌𝜌𝑖𝑖+1⁄  due to loading 𝑓𝑓(𝑛𝑛), 𝑛𝑛 ≥ 1 are given with reference to Figure 1 as, 

  𝑠𝑠1(𝑛𝑛 + 1) = −𝑠𝑠1(𝑛𝑛) +
2𝛼𝛼1

1 + 𝛼𝛼1
𝑠𝑠2(𝑛𝑛) +

2
1 + 𝛼𝛼1

𝑓𝑓(𝑛𝑛 + 1),                                   

𝑠𝑠2(𝑛𝑛 + 1) = −𝑠𝑠2(𝑛𝑛) +
2𝛼𝛼2

1 + 𝛼𝛼2
𝑠𝑠3(𝑛𝑛) +

2
1 + 𝛼𝛼2

𝑠𝑠1(𝑛𝑛 + 1),                               

⋯                                                                                                                                   

𝑠𝑠𝑚𝑚−1(𝑛𝑛 + 1) = −𝑠𝑠𝑚𝑚−1(𝑛𝑛) +
2𝛼𝛼𝑚𝑚−1

1 + 𝛼𝛼𝑚𝑚−1
𝑠𝑠𝑚𝑚(𝑛𝑛) +

2
1 + 𝛼𝛼𝑚𝑚−1

𝑠𝑠𝑚𝑚−2(𝑛𝑛 + 1), 

𝑠𝑠𝑚𝑚(𝑛𝑛 + 1) = −𝑠𝑠𝑚𝑚(𝑛𝑛) + 2𝑠𝑠𝑚𝑚−1(𝑛𝑛) .                                                                     

(1) 

Resonance frequencies 𝜔𝜔𝑘𝑘 = arg 𝑧𝑧𝑘𝑘, 1 ≤ 𝑘𝑘 ≤ �𝑚𝑚
2

 � are identified as the zeros of the determinant of m-
layered tridiagonal Toeplitz systems found from z-transform of (1) above as, 

 
𝑧𝑧𝑘𝑘 = 2𝜍𝜍Θ − 1 ± 2𝑖𝑖�𝜍𝜍𝜍𝜍(1 − 𝜍𝜍𝜍𝜍), 𝛩𝛩 = cos2

𝜋𝜋𝜋𝜋
𝑚𝑚 + 1

 , 0 < 𝜍𝜍 < 1  .   (2) 

A particular resonance response generated through sinusoidal loading of the boundary is shown in 
Figure 2; current efforts are focused on determining the limitations in using finite system (1) to gener-
ate acoustic bandgaps for infinite periodic media such as those investigated in Ref. 10, Figure 3. 
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Figure 2 Resonance response of Layer 1 in a 47-layered 
medium; stress values formed from interlacing sequences: 
𝑓𝑓(𝑛𝑛) = sin(𝑛𝑛𝜔𝜔𝑘𝑘), and 𝑠𝑠1(𝑛𝑛), 𝑘𝑘 = 9, 𝜍𝜍 = 1/2. 

Figure 3 Dispersion graphs showing acoustic bandgap 
formation in a three-material unit cell (after Ref. 10). 

Phononics 2011: First International Conference on Phononic Crystals, Metamaterials and Optomechanics
Santa Fe, New Mexico, USA, May 29-June 2, 2011

PHONONICS-2011-0149

2



94

Track 1: Phononic Crystals	 Phononics 2011
 

Phononics 2011: First International Conference on Phononic Crystals, Metamaterials and Optomechanics 

Santa Fe, New Mexico, USA, May 29-June 2, 2010 

PHONONICS-2011-XXXXX 
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Abstract: This work suggests a criterion for verification of Phononic bandpaps simulated by 
two dimensional elastodynamic models. The bandgap of a phononic crystals (PnCs) was stud-
ied using both 2D and 3D  finite element analyses.  Comparing the numerical results with ex-
periment, this study indicates that validity of 2D models depends on the ratio of the thickness 
to the excitation wavelength. 

      In order to attain a fast estimation of bandgaps in PnCs, simulation of an infinitely thick model is 
an alternative to finite thickness models1. In order to reduce the three-dimensional equations to those 
for a two-dimensional model, plane stress condition is a common assumption employed in elastic me-
dia2. Since in the two dimensional analysis the degrees of freedom (DOFs) for each node is 2, and the 
model is limited to an area instead of a volume, this model is computationally cheaper than 3D mod-
els. In this model the medium is assumed so thin such that the out-of-plane components of stress van-
ishes2. However this assumption leads to neglecting out-of-plane modes in vibration of PnCs.  In this 
paper a PnC, consisting a silicon dioxide and tungsten inclusions, is studied using 3D and 2D har-
monic finite element analyses (HFEAs). Results of the current analyses are verified by comparing 
them to experimental results3. This study evaluates the efficiency and inefficiencies of these methods 
for prediction of phononic bandgap. 

    In harmonic analysis the governing 
equations are solved in the frequency do-
main and the steady state solution is at-
tained without time discretization4,5. In 
order to apply the boundary conditions, a 
set of nodes are harmonically excited at a 
discretized range of frequencies. Conse-
quently, the transmission spectrum of a 
PnC is achieved using the steady state 
solutions to the PnC model under line excitation in 2D model  or surface excitation in 3D model (See 
Fig. 1). In Fig. 1 the current three dimensional numerical space is illustrated. The phononic crystal 
consists of one row of 19 tungsten inclusions inside a silicon dioxide matrix. The lattice constant a is 
2.5 µm in the x and y directions and the tungsten rods have radii of 0.6 µm. The thickness of the PnCs 
is 1.85 µm. To model an infinite periodic structure along y direction, periodic boundary conditions are 
employed on the bottom and top nodes. The exterior domains, shown in Fig 1 , comprises perfectly 
matched layers (PMLs). The PMLs serve to attenuate the outgoing waves, and reflect little to no en-
ergy back into the PnC6. Longitudinal waves are launched into the PnC by harmonic excitation of the 
nodes on the left surface of the leftmost exterior domain (See Fig. 1). In the 2D, model all the dimen-

sions are similar to the shown 3D model but the 
numerical space is a 2D rectangle due to plane 
stress assumptions.      

     In Table 1 the density, elastic  modulii, and 
Poisson’s ratios of silicon dioxide and tungsten 
are shown. In the 3D simulation, only exten-
sional elastic waves are taken into account, in 
order to make more accurate comparison to the 

Material Tungsten  Silicon dioxide  

Density )(kg/m 3  19250 2200 

Young’s Modulus (GPa) 409 75 
Poisson’s Ratio 0.25 0.17 

Table 1 Materials that constitute the PnC.  

Figure 1 Numerical space of the 3D model for the 
PnC. 
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2D case in which no flexural modes are allowed. For this reason only symmetric forces are applied on 
the boundary condition of the left exterior domain (see Fig 1). 

    The scaled transmission of the PnC predicted by the 
FEA using 2D and 3D approaches are presented in Fig. 2a. 
In this plot HFEA 2D stands for the prediction of a 2D 
elastodynamic model for the transmission through the 
PnC. The 3D simulation is compared with the 2D model 
along with the actual experimental results previously re-
ported by Su et al.3. Here, the borders of bandgp are de-
fined by transmission of -10 (dB).  The comparison shows 
that both finite element models predict a similar primary 
bandgap. The predicted beginning frequency is about 80 
MHz smaller than the experimental prediction. Moreover, 
the actual end frequency of the band gap is only 20 MHz 
smaller than the numerical results, which shows a good 
agreement between the theoretical 2D, theoretical 3D,  and 
experimental piramary bandgaps. However, Fig. 2a also 
demonstrates that the 2D model fails to predict the experi-
mental secondary bandgap ranging from 1180 MHz to 
1400 MHz.  In contrast to the 2D model,  the 3D model 
clearly shows this band gap.  

    The discrepancy between the 2D and 3D analyses at the 
higher frequencies raises the question of validity of the 2D 
analysis. This question is addressed in Fig. 2b.  Here, the 
ratio of out-of-plane displacement )( zU  to the in-plane dis-
placement )( xU  on the right side of the PnC (See Fig 1)  is 
depicted for different dimensionless frequencies defined as 
the ratio of the PnC thickness t to the wavelength λ. Addi-

tionally, this dimensionless frequency in the abscissa of Fig. 2b corresponds to the frequency in ab-
scissa of Fig 2a.  The shaded region in Fig. 2b shows the dimensionless frequencies corresponding to 
the secondary band gap where the two dimensional FEA is not in agreement with the experiment and 
3D model. One can notice that in the shaded box the three dimensional FEA shows a range from 0.7 
and 2.5 for the ratio of out-of-plane to in-plane displacements. This high ratio indicates that the out-
of-plane displacements are not insignificant in the problem while the 2D analysis inherently does not 
take these displacements into account. It also indicates that the nature of the problem is not 2D at the 
frequencies associated with the secondary bandgap. The trend of dimensionless lateral displacements 
shown in Fig. 2b suggests that the 2D analysis is not applicable when the ratio of the thickness to 
wavelength approaches to 0.5. Another physical explanation is that when the wavelength approaches 
to half of the thickness, the out-of-plane mode of vibration is greatly excited because the excitation 
frequency is close to the natural frequency of this mode. However at lower frequencies the 2D and 3D 
analyses do not show a significant difference. In essence, Fig 1 suggests that at the dimensionless ex-
citation frequencies much smaller than 0.37 the 2D HFEA is an accurate alternative to 3D the model. 
Since a 2D model requires a smaller numerical space, one might consider attaining a fast approxima-
tion of a phononic bandgap, when the wavelength is much greater than half of the thickness. 
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Figure 1 (a) Transmission spectrum based on the 
2D HFEA (red dotted line), 3D HFEA (green 
dashed line), and the experiment (red dotted 
line). (b) Ratio of out-of-plane to in-plane dis-
placements versus dimensionless excitation fre-
quency. The shaded gray region indicates the 
frequencies at which the 2D and 3D finite ele-
ments analyses do not agtree. 
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From Newton's Cradle to New Acoustic Crystals 

Chiara Daraio 

Engineering and Applied Sciences, California Institute of Technology, 1200 E California Blvd. Pasadena CA 

91125, USA. Daraio@caltech.edu 

 

Abstract: The bouncing beads of Newton's cradle fascinate children and executives alike, but 

their symmetric dance hides a complex dynamic behavior. By assembling grains in crystals we 

are developing new materials and devices with unique properties. We have constructed two-

dimensional systems that can redirect mechanical waves, and have developed new materials 

for absorbing vibrations and explosive blasts. 

In this paper, I will discuss recent progress 

obtained in the study of nonlinear acoustic 

crystals. In particular, I will discuss the 

response of granular crystals excited by 

impulsive loading and continuous 

vibrations. Granular crystals are here 

defined as highly ordered aggregates of 

particles in elastic contact with each other, 

preferably in linear or network shaped 

arrangements. In our work, the assemblage 

of the novel acoustic materials is achieved 

by aligning granular components inside a 

selected matrix (Fig. 1) or in a 

self‐standing crystal, designing contact 

interactions for the control of stress 

transfer between particles. The design of these materials starts from a well-understood local phenom-

enon (i.e. the elastic Hertzian contact interactions between particles) and creates global structures with 

unique properties (the granular crystals). This work leverages theoretical understanding of the highly 

nonlinear dynamic response of the fundamental components
1
 for the design of experiments, and it is 

informed by discrete numerical simulations. The potential applications targeted by our work are: i) 

mechanical systems with tunable acoustic/elastic properties; ii) devices with controllable acoustic 

bandgaps within the audible range, noise mitigation and vibration absorbing layers; iii) novel 

shock‐energy‐trapping and pulse‐disintegrating devices and micro‐ or macro‐impact shielding; iv) 

new acoustic lenses with a tunable focal point and v) new methods of Non Destructive Evaluation, 

Structural Health Monitoring (NDE/SHM) and modal testing. In this paper, I will focus on recent re-

sults obtained with two-dimensional granular systems excited by impulsive loading and continuous 

vibrations. I will present how granular crystals can control the propagation of acoustic waves by vary-

ing the static compression applied to the system, the particles' geometry and material properties.  

 

Background 

A chain of spherical particles (i.e. a longer version of the well known “Newton’s cradle” toy) hides an 

intriguing elegant complexity, and a myriad of tunable mechanical phenomena that have been attract-

ing increasing attention in the scientific community
1-6

. Some of the earliest findings in this discrete 

system
1-4 

reported the formation of new, highly nonlinear solitary waves, with a finite wavelength, 

when the system is impacted at one end by a striker. The presence of defects and impurities has been 

shown to cause scattering and energy trapping
5
. When the system is highly precompressed its re-

sponse can be varied to become weakly nonlinear or linear, depending on the ratio between the dy-

namic excitations' amplitude and the amplitude of the static compressive force
3
. When these systems 

are driven in the linear or weakly nonlinear regime, they present tunable band gaps in their dispersion 

relation
6
. In our current work, we have extended these findings to two-dimensional systems

7
 (Fig. 2) 

composed of uniform and heterogeneous materials.  

Figure 1 (Left) Example of a three-dimensional acoustic crystal 

realized aligning 2mm φ beads in vertical lodgings in a soft polymer 
matrix

2
; (right) zoomed in view from top. 

Phononics 2011: First International Conference on Phononic Crystals, Metamaterials and Optomechanics
Santa Fe, New Mexico, USA, May 29-June 2, 2011

PHONONICS-2011-0155

1



97

Phononics 2011 	 Track 1: Phononic Crystals
 

Phononics 2011: First International Conference on Phononic Crystals, Metamaterials and Optomechanics 

Santa Fe, New Mexico, USA, May 29‐June 2, 2010 

PHONONICS‐2011‐XXXXX 

 

Results 

We 

studied periodic arrays of particles with variable precompression using theory, discrete numerical 

models and experiments. We consider different configurations of the lattices, using spheres made of 

different materials. Experimental measurements of the transmitted power spectral density are per-

formed highlighting the presence of band gaps in two-dimensional diatomic (two-particle periodicity, 

Fig. 2) or triatomic crystals. Depending on the static force applied, 

the edge frequency of the acoustic and optical bands can be tuned. 

In the layered diatomic square packing studied, when the static 

transversal force is equal to 0, a quasi one-dimensional response is 

observed. When the static transversal force is increased, the 

propagation of waves can be tuned from 1-D to 2-D, enabling 

transversal energy propagation. These systems could be used as 

tunable, load-bearing vibration absorbers or acoustic filters for 

frequencies belonging to the audible range.  

We also study the effects of defects in a squared packing of uniform 

particles, when the system in non-precompressed and excited by 

transient pulses.  The defect corresponds to an interstitial impurity 

of different materials (Fig. 3). We analyze the response of the 

traveling signal as a function of the materials properties for the 

defect particles and study the resulting energy trapping, redirection 

and particles oscillations. The defects behave as energy scatterers 

and, depending on their materials properties, can trap variable 

amount of energy and momentum. The interaction of multiple 

defects on the same lattice will also be discussed. The work includes experiments and numerical 

simulations based on a discrete particle model.  

Future developments will include the use of numerical optimization to control wave propagation and 

energy transmission selecting optimal particles' geometry, materials and arrangements.  
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Figure 2 (Left) Two-dimensional acoustic crystal realized aligning steel and aluminium particles in alternating layers. 

(right) Dispersion relations calculated for a constant longitudinal static force (FL = 20N) and a transversal force (FT ) taking 

the values 0, 0.1 and 20N. 

  

Figure 3 Digital image of the experi-

mental setup used to study the effect 

of a defect in a 2-D squared array of 

stainless steel particles. The image 

shows the interstitial defect and one of 

the triaxial accelerometers embedded 
in a particle to detect the waves.  
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Abstract: A Phononic crystal (PC) consisting of a square array of cylindrical Polyvinylchlo-
ride inclusions in air, is used to construct a variety of acoustic logic gates. This PC has a 
unique band structure that allows for the control of the relative phase between incident acous-
tic waves. The realization of the gates is demonstrated through simulations employing the fi-
nite-difference-time-domain method. 
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Device Level Harmonic Finite Element Analysis of Phononic 
Crystals Operating at GHz Frequencies 
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Abstract: The vibrational behavior of a phononic crystal is studied at gigahertz frequencies. 
The phononic crystal is comprised of a silicon slab with tungsten inclusions filtering out 
waves within the frequency range of 0.7 GHz to 1.1 GHz. Comparisons show that the harmon-
ic finite element analysis is capable of more accurately explaining the experimental results 
than FDTD when compared to experiments. 

For this poster, the vibrational behavior of a phononic crystal is studied at gigahertz frequencies.  The 
phononic crystal is comprised of a silicon slab with tungsten inclusions filtering out waves within the 
frequency range of 0.7 GHz to 1.1 GHz.  Two-dimensional harmonic finite element analysis (FEA) is 
employed to model the transmission of stresswaves launched from a transmitter and passing through 
the crystal.  The numerical results are compared with another prevalent numerical method, finite dif-
ference time domain (FDTD), as well as with experimental results.  These comparisons show that the 
harmonic finite element analysis is capable of more accurately explaining the experimental results 
than FDTD.  This more favorable comparison is attributed to a resonance that course between the 
transmitter and the phononic crystal. 
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 Phononic Band Gap Optimization  
for Combined In-Plane and Out-of-Plane Waves  

 

Osama R. Bilal, Mahmoud I. Hussein 
 Department of Aerospace Engineering Sciences, University of Colorado at Boulder, CO 80309, USA  

osama.bilal@colorado.edu, mih@colorado.edu 
 

Abstract: Utilizing the reduced Bloch mode expansion method for fast band structure calcula-
tions and specialized genetic algorithms for a search among numerous topologies, optimal 
phononic crystal unit cell designs are generated for (1) in-plane, (2) out-of-plane and (3) com-
bined in-plane and out-of-plane elastic wave propagation in a 2D geometrically periodic single 
material media. This process of natural evolution yields elegant designs with exceptionally 
large, and low, frequency band gaps.     

Phononic crystals are material systems with the distinct feature of unit cell repetition. The unit cell is 
composed of at least two types of material phases with different properties or a single material with a 
non-uniform geometric structure. An important dispersion-related characteristic of wave propagation 
through phononic crystals is the existence of frequency band gaps, where waves do not propagate. 
The widths of these bands, and their locations in the frequency domain, depend on the topology of the 
unit cell, material-wise or geometry-wise. Through topology optimization, the configuration of the 
unit cell can be designed to exhibit a maximum value of band gap width divided by band gap central 
frequency, i.e., large and low band gap. This problem has been investigated earlier for bi-material 
media with a focus on either in-plane (P/SV) wave propagation or out-of-plane (SH) wave propaga-
tion1-3.  In this paper we consider geometrically periodic square lattices formed from only one material 
(silicon), and investigate three band-gap optimization problems: (1) in-plane waves only, (2) out-of-
plane waves only and (3) combined in-plane and out-of-plane waves.  

We build our elastodynamic model based on the wave equation for a two-dimensional media under 
plain strain conditions1,4. In this model, incident in-plane waves travel at the speed of the material’s 
longitudinal velocity tc  and incident out-of-plane waves travel at the speed of the material’s trans-
verse velocity tc . The phononic band structure is calculated by employing Bloch theory and using the 
finite element method to expand the equation of motion in real space. Furthermore, the reduced Bloch 
mode expansion (RBME) method3 is used to substantially reduce the size of the computational model 
and hence make it feasible to search, using genetic algorithms (GA), among an exceedingly large de-
sign space representing a multitude of different possible material distributions within the unit cell do-
main.   

Unit Cell Representation and Design Objective   
The square unit cell Y is composed of nn  pixels forming a matrix ,G  which we reduce in size fol-
lowing the underlying lattice symmetry. Each of the pixels can be assigned to either a no material or a 
material (silicon), i.e., }.1,0{ijg We formulate our objective function in terms of the size of a par-
ticular band gap normalized with respect to its central frequency: 

2 2
1 1 1

2 2
1 1 1
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k k
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                         (1) 

where 2
1( ( , ))kn

j i jmin k g  and 2
1( ( , ))kn

j i jmax k g  denote the minimum and maximum, respective-

ly, of the thi  frequency i  over the entire discrete wave vector set, ,,,1, kj njk   tracing the bor-
der of the irreducible Brillouin zone.  

Genetic Algorithm    
For the initialization step in the GA, we observed that almost any randomly generated design at high 
unit cell resolution (i.e. 24n   pixels) exhibits no band gap. To address this problem, we use the area 
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between the two dispersion branches of interest as an indicator for the fitness of the unit cell designs 
used in the GA selection operation: 

   FgfFitness  )(                                                       (2) 
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In Eq. (2),   is chosen to be a large number 4( 10 )   in order to guarantee that any design that has a 
band gap is selected over a design that has no band gap. Furthermore, the GA initialization procedure 
is set to ensure that each two adjacent pixels in a row have the same material type. At each evolutio-
nary step, a simple single point crossover is carried out between the two selected designs with a tour-
nament selection operator. Finally the GA is programmed to terminate when the generation counter 
reaches the max number of generations. Following termination, the best surviving design passes 
through a simple one-point flip local search for fine-tuning.  

Results and Conclusion 
Upon implementing our GA- and RBME-based search methodology, we obtained the following op-
timal unit cell designs. Fig. (1): first band gap for out-of-plane waves, band gap size f = 0.7884;     
Fig. (2): second band gap for out-of-plane waves, band gap size f = 0.8945; Not shown: first band gap 
for in-plane waves, band gap size f = 0; Fig. (3): second band gap for in-plane waves, band gap size f 
= 0.8705; Fig. (4): lowest possible band gap for combined out-of plane and in-plane waves; band gap 
size f* = 0.6938, where the superscript “*” denotes a modified objective function that describes max-
imization of a combined band gap among the band structures of the two types of waves. We note that 
the out-of-plane designs show a continuous solid media approaching the limiting case of separate 
square inclusions in air. The in-plane designs on the other hand show a mostly solid material with de-
licately shaped air holes. The optimal design for the combined case appears to be a blend among the 
out-of-plane and in-plane design traits. All designs are amenable to fabrication upon post-optimization 
smoothening.   
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Figure 4. Optimal design for combined in-plane (red-dashed) and out-of-plane (black) waves 

Figure 1. Optimal design for 1st band 
gap for out-of-plane waves 

Figure 2. Optimal design for 2nd band 
gap for out-of-plane waves 

Figure 3. Optimal design for 1st band 
gap for out-of-plane waves 
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Multiscale Dispersive Design:  
A Building Blocks Approach to Phononics  
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Abstract: A key feature in most applications in phononics is an underlying spatial periodicity. 
When infinite in extent, this spatial symmetry constitutes a periodic “material”. When trun-
cated to finite dimensions, a periodic “structure” is formed. Between the two entities there is 
an abundance of opportunities for shaping a desired wave propagation or vibration response. 
In this work we will revisit the concept of Multiscale Dispersive Design and use it towards the 
exploration of new avenues in phononic crystals and metamaterials applications. 

 

Within phononic crystals and metamaterials, various wave phenomena occur across the un-
derlying spatial periodicity inducing mechanisms of wave interference and/or local resonance 
that lead to a banded frequency response. Similar physical behavior is possible within finite 
structures composed of periodic materials although the periodicity truncation in itself alters 
the dynamical characteristics (see, e.g., Ref. 1). In some cases these alterations are mild (for 
example, the frequency range of the band gaps are practically retained), but in other cases 
significant changes to the dynamical response are realized, such as the possible appearance of 
resonances in the band gap. It has been shown in several studies that if a substantially large 
number of unit cells is retained in the truncated structure, or the finite periodic material por-
tion of a structure, then the frequency response of the underlying unit cell will still dominate1.  

In this paper, we will revisit the concept of Multiscale Dispersive Design (MDD) previously 
proposed by the author and collaborators2,3. This is essentially a design methodology where-
by periodic unit cells are designed for desired frequency band properties, and with appropri-
ate scaling, these cells are used as building blocks for forming fully periodic or partially peri-
odic structures with related dynamical characteristics. Through this approach, which is hie-
rarchical and integrated, structures can be devised for a wide range of wave propagation and 
vibration response tailored to specification.  

As an example we consider the problem of designing a passive demultiplexer using phononic 
crystals, a problem previously studied in the literature4. From Ref. 3, Fig. 1 shows a two-
dimensional plate-like structure formed from three types of phononic crystal building blocks 
each based on a unit cell with a unique band gap: the group of cells with a black inclusion 
function as “walls” for all waves in the frequency range of 43  ( denotes non-
dimensional frequency), and the group of cells with an orange or a blue inclusion functions as 
a “gate” that allow passage of waves in the range of 44.3   or 8.33  , respective-
ly. By employing a portion of each type of periodic material (i.e., with at least 3-4 unit cells 
in each direction), the underlying band gap properties will still take effect in the truncated 
configuration. In this manner a passive demultiplexer is formed by the macroscale layout 
shown in Fig. 1. 

The building blocks approach demonstrated by this demultiplexer example is being extended 
to a variety of new applications in phononics. A description and analysis of these applications 
and their potential impact to the engineering of novel devices, or coupled material/structure 
systems, will be discussed. 
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Figure 1. (a) Frequency demultiplexer formed from a combination of phononic crystal building 
blocks. In this passive structure, low frequency waves are turned to the left (b), and high frequency 
waves are turned to the right (c). 
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